动态规划 - 分割数组的最大值

动态规划求解数组分割最大值问题
给定一个非负整数数组和目标分割数m,找出将数组分割成m个非空连续子数组时,使这些子数组各自和的最大值最小。这是一道动态规划问题,具有无后向性特点。通过定义dp[i][j]表示数组前i个元素分割成j份的最小最大和,利用二分搜索和贪心策略可以找到最优解。

给定一个非负整数数组和一个整数 m,你需要将这个数组分成 m 个非空的连续子数组。设计一个算法使得这 m 个子数组各自和的最大值最小。

注意:
数组长度 n 满足以下条件:

1 ≤ n ≤ 1000
1 ≤ m ≤ min(50, n)

示例:

输入:

nums = [7,2,5,10,8]
m = 2

输出:
18

解释:

一共有四种方法将nums分割为2个子数组。
其中最好的方式是将其分为[7,2,5] 和 [10,8],
因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。

一道很经典的DP问题, 不过所有的算法比赛中, 我们在第一时间总会尝试用 borced solution
DFS 搜索把n长度的数据划分为m段,超时, 不过这段dfs代码设计的还是十分巧妙的, 适合很多种对数据做搜索的解法。

class Solution {
   
   
    private int ans;
    private int n, m;
    private void dfs(int[] nums, int i, int cntSubarrays, int curSum, int curMax) {
   
   
        if (i == n && cntSubarrays == m) {
   
   
            ans = Math.min(ans, curMax);
            return;
        }
        if (i == n) {
   
   
            return;
        }
        if (i > 0<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值