给定一个非负整数数组和一个整数 m,你需要将这个数组分成 m 个非空的连续子数组。设计一个算法使得这 m 个子数组各自和的最大值最小。
注意:
数组长度 n 满足以下条件:
1 ≤ n ≤ 1000
1 ≤ m ≤ min(50, n)
示例:
输入:
nums = [7,2,5,10,8]
m = 2
输出:
18
解释:
一共有四种方法将nums分割为2个子数组。
其中最好的方式是将其分为[7,2,5] 和 [10,8],
因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。
一道很经典的DP问题, 不过所有的算法比赛中, 我们在第一时间总会尝试用 borced solution
DFS 搜索把n长度的数据划分为m段,超时, 不过这段dfs代码设计的还是十分巧妙的, 适合很多种对数据做搜索的解法。
class Solution {
private int ans;
private int n, m;
private void dfs(int[] nums, int i, int cntSubarrays, int curSum, int curMax) {
if (i == n && cntSubarrays == m) {
ans = Math.min(ans, curMax);
return;
}
if (i == n) {
return;
}
if (i > 0<
动态规划求解数组分割最大值问题

给定一个非负整数数组和目标分割数m,找出将数组分割成m个非空连续子数组时,使这些子数组各自和的最大值最小。这是一道动态规划问题,具有无后向性特点。通过定义dp[i][j]表示数组前i个元素分割成j份的最小最大和,利用二分搜索和贪心策略可以找到最优解。
最低0.47元/天 解锁文章
1110

被折叠的 条评论
为什么被折叠?



