线性代数

1.求矩阵的逆

(帮助理解:花了10分钟,终于明白矩阵的逆到底有什么用

2.求特征值/特征向量

【工程数学基础】1_特征值与特征向量             这个B站视频基本上算是讲透了

3.矩阵的秩(rank)

Rank (linear algebra)

Tensor Values 

A tensor's rank is its number of dimensions 

3.1 矩阵满不满秩影响了什么

首先要说一下矩阵的本质是什么。一句话总结:矩阵是一种操作。对谁的操作呢?是对向量的操作。

 不满秩的矩阵,对向量会产生降维操作的影响。

首先要说一下矩阵的本质是什么。

一句话总结:矩阵是一种操作。

对谁的操作呢?是对向量的操作。学习线性代数前,我们一直在实数的范畴考虑问题,学习线性代数后,就应该以向量(也就是一组数)作为考虑问题的基本单元。

考虑二维向量的集合。可以直观地看到,二维平面中点的集合就等同于二维向量的集合。

矩阵A乘以向量b,可以得到另一个向量c。若向量b,c均是二维,矩阵A就可以看做一个对二维向量的操作。

矩阵不满秩有两种情况(讨论行不满秩):

一,某一行或者列为零。二,某两行或者多行线性相关。

一:讨论某行为零

这时可以发现,如果向量b两个元素全都不是零,而矩阵A没有0行,则向量c两个元素一定都不是0。

如果矩阵A仅有一个非零行,则向量c必有一个元素为零,另一个非零。

如果矩阵A没有非零行,则向量c为零向量。

这时候,你可以理解为,一个有零行的矩阵,会对一个向量构成一种"降维"的操作。

对于n维向量b,元素均不为零,若前面乘以n维,非零行数为m的矩阵A,计算出的向量c中有n-m个零。

二:讨论线性相关:

若矩阵A某两行线性相关,则这两行分别乘以向量b,得到的两个元素必为k倍的关系。

想象整个空间中所有向量都被矩阵A乘在前面,那么,得到的新的向量,全部都有两个元素成k倍的关系,在二维空间中,就是整个二维平面经过操作后,所有向量都在y=kx直线上。这也可以看做一种“降维”。相应的,n维空间,经过秩为m的矩阵操作。得到的新向量有n-m个元素满足方程约束,新向量的集合构成一个维度小于n的空间。

 作者:Yuanqi Li
链接:https://www.zhihu.com/question/299765564/answer/517121739
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

4.矩阵的样子与元素的位置

          之前记Am*n,总是分不清行?列?竖着的?横着的?

          直接记住下面这个矩阵的样子吧,还有左下角、右下角上的元素。直接对应,就和当时三角函数直接及三角形的样子和边长一样,不用计算sin之类的直接倍数就得出来。

         左上角是a11,不用记,鬼都知道。   右上角是a1n,左下角am1,右下角amn

         嗯,右下角是amn,这个矩阵是Am*n。关键记住最低行开头是am1,结尾是amn;第一行结尾是a1n。

5.矩阵的行列式

线性代数复习笔记——第一章

行列式

(1)由二元线性方程组引出二阶行列式。行列式是一个值,不是一个矩阵。

(2)二阶和三阶行列式的值可以通过对角线法则计算,更高阶的不符合对角线法则。

矩阵可以对向量进行变换,而行列式代表的是矩阵变换前后的面积(体积)之比。

也就是之前遇到的说法,体积扩大的倍数。

               无法理解线性代数怎么办?           这篇写得很好

矩阵可以对向量进行变换,比如通过旋转矩阵可以让某个正方形变换为旋转后的正方形:

而行列式代表的是矩阵变换前后的面积(体积)之比:

很显然旋转正方形不会导致面积改变,所以旋转矩阵变换前后的面积之比为1,或者说行列式为1:

6.方阵

只有方阵才能求逆         (矩阵论中有伪逆,非方阵可求伪逆)

只有方阵才有行列式

自己的理解:当矩阵操作  的后面跟的向量组的模样确定之后,矩阵的长式确定的,只有长等于后面向量的维数,这个相乘才有意义。而被认为是一个操作的这个矩阵,它的高决定了操作完产生的新的矩阵的高,也就是新的向量组的向量的维度。只有是方阵的时候,新的到的矩阵跟原来的被操作的那个矩阵 的高才相同。 

7.张量——tensor

 这篇说得很清楚                 这是一份文科生都能看懂的线性代数简介

 

标量

标量就是一个简单的数,比如 24。

向量

这是一份文科生都能看懂的线性代数简介

向量是一个有序数组,能够写成一行或者一列的形式。向量只包含一个索引,用来表示向量中的某个特定元素。比如 V_2 表示向量中的第二个元素,在上面淡黄色的图中是-8。

矩阵

矩阵是一个有序的二维数组,有两个索引。第一个索引表示行,第二个索引表示列。例如,M_23 表示的是第二行、第三列的元素,在上面淡黄色的图中是 8。矩阵可以有多个行或者列,注意一个向量也是一个矩阵,但仅有一行或者一列。

淡黄色图中有一个矩阵的例子:一个 2×3 的矩阵 (行数×列数)。下图中是另一个矩阵和对应的表示形式。

这是一份文科生都能看懂的线性代数简介

张量

三维张量是按照一定规律排列在方格中的数组,其中一个变量数字表示轴。张量有三个索引,其中第一个索引表示行,第二个索引表示列,第三个索引表示轴。例如,V_232 指向第二行、第三列、第二轴的元素,在下图右边的张量中表示 5。

这是一份文科生都能看懂的线性代数简介

张量是上面谈到的概念中最常用的一个,因为张量是一个多维数组,同时可以是一个向量或者一个矩阵,具体取决于它的索引数量。例如,一阶张量可以表示向量(1 个索引),二阶张量可以表示矩阵(2 个索引),三阶就是张量(3 个索引),更高阶的称为高阶张量(超过 3 个索引)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值