排序:
默认
按更新时间
按访问量

【CNN基础】卷积神经网络笔记—Padding

理解CNN中的Padding操作:6*6矩阵与3*3矩阵卷积,得到4*4矩阵。普遍规律是  n*n 卷积 f*f 得到 n-f+1 * n-f+1。但是存在两个缺点:1.卷积后的矩阵越变越小(如果卷积层100层,每一层都缩小最终得到的将是很小的图片)2.输入矩阵(左)边缘像素(绿阴影)只被计算过一...

2018-06-02 23:53:26

阅读数:82

评论数:0

认识VGGNet

SSD网络的主体一种是基于VGG16,另一种是基于ResNext101。于是今天研究了一下VGGNet。首先是DeepLearning里面图像分类模型的发展:LeNet-AlexNet-VGG-GoogLetNet-ResNet以及他们的性能比较:值得一提的是,目前的ResNet层数据说已经达到了...

2018-04-07 15:30:04

阅读数:110

评论数:0

RNN应用-基于RNN的语言模型

RNN循环神经网络,具有处理序列数据的能力,也就是前面的数据跟后面的数据出现顺序是有关系的。以下内容来自:https://www.zybuluo.com/hanbingtao/note/541458现在,我们介绍一下基于RNN语言模型。我们首先把词依次输入到循环神经网络中,每输入一个词,循环神经网...

2018-03-10 23:41:38

阅读数:78

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭