三人决斗问题

作者:周久海
链接:https://www.zhihu.com/question/20529567/answer/19083395
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

先来点简单的,也为解决该题做准备。
如果AB单挑,A先开枪,A存活的概率是
30%+70%×50%×30%+70%×50%×70%×50%×30%+……=0.3/0.65
相应的,B存活的概率是 1-0.3/0.65 = 0.35/0.65

然后看看A、B、C的三人决斗的情况。三个人的话,那就首先要考虑一下目标了,对于A来说,在C尚存活的情况下,他肯定不会以B为目标,打不中等于浪费机会,打中更惨,下一轮直接被C爆了,所以,先解决威胁大的是正解,于是A会以C为目标。
同理,B会以C目标,C会以B为目标。

下面来看看A的存活概率,分三种可能:
A干掉了C,B没有干掉A,此时问题退化为AB决斗A先开枪了。
30%×50%×0.3/0.65
A没有干掉C,B干掉了C,此时问题也退化为AB决斗A先开枪了。
70%×50%×0.3/0.65
A没有干掉C,B也没有干掉C,C干掉B,A干掉C。
70%×50%×30%
全概率事件概率相加,得到A存活的概率为
0.105+3/13≈0.336

B存活下来也分三种可能性:
A干掉了C,B干掉A
30%×50%
A干掉了C,B没有干掉A,此时问题退化为AB决斗A先开枪了。
30%×50%×0.35/0.65
A没有干掉C,B干掉了C,此时问题也退化为AB决斗A先开枪了。
70%×50%×0.35/0.65
所以B活下来的可能性为0.15+3.5/13≈0.419

C存活的只有一种情况,比较简单:
A没有干掉C,B没有干掉C,C干掉B,A没有干掉C,C干掉A。
70%×50%×70%=0.245

由此我们学到了一个道理:先下手为强!

如果允许弃权,或者朝天开枪,那么情况又有变化了。
首先B不可能弃权,因为B知道自己是C的目标,而C又百发百中,这个先动手的机会一定不能放弃,如果C已经死了,两个人对决,先手机会也有优势。
C更不可能弃权了,一是自己百发百中,二是自己均是A、B的目标。
那A如果第一轮弃权呢。
来算算看。
A的存活概率,分两种可能:
B干掉了C,此时问题退化为AB决斗A先开枪了。
50%×0.3/0.65
B没有干掉C,C干掉B,A干掉C。
50%×30%
全概率事件概率相加,得到A存活的概率为
0.5(0.3/0.65+0.3)≈ 0.381。
38%的存活概率啊!比之前33.6%的最佳方案高了不少!

看看B的存活概率,只有一种可能性:
B干掉C,此时问题退化为AB决斗A先开枪了。
50%×0.35/0.65≈0.269。

C的存活率也很简单:
B没有干掉C,C干掉B,A没有干掉C,C干掉A。
50%×70%≈0.35

哇喔,看来A的首轮弃权给了A、C更大的存活率,并使得A一跃成为最有希望存活选手!
所以,如果A的逻辑推理学得还不错的话,必然选择首轮弃权了。

展开阅读全文

没有更多推荐了,返回首页