优化SVR数据预测模型——差分进化算法附Matlab源代码
为了提高支持向量回归(Support Vector Regression, SVR)模型的精度和性能,本文提出了一种基于差分进化算法(Differential Evolution, DE)的优化策略。该方法将DE算法应用于SVR中的超参数优化,通过优化C和ε参数寻找最优解以达到更好的预测效果。
具体实现过程如下:
- 数据准备
准备需要训练的数据集和验证集。
- 初始化DE算法参数
初始化DE算法的参数,包括种群大小、迭代次数等。
- 初始化SVR超参数
随机初始化C和ε的值。
- 训练SVR模型
使用训练集进行SVR模型的训练,并计算出误差。
- 优化超参数
应用DE算法对C和ε进行优化,在每次迭代中计算适应度并更新C和ε的值。
- 验证模型
使用验证集测试优化后的SVR模型,计算出测试误差。
- 结果分析
分析优化前后的性能表现差异,并比较不同算法的结果。
下面是本文的Matlab源代码,包括DE算法和SVR模型的实现

本文介绍了一种提高支持向量回归(SVR)模型精度的方法,即结合差分进化算法(DE)优化SVR的超参数C和ε。通过数据准备、DE算法参数初始化、SVR超参数初始化、模型训练、超参数优化和模型验证,实现了更精确的预测效果。附带了Matlab源代码以供实现。
订阅专栏 解锁全文
1172

被折叠的 条评论
为什么被折叠?



