优化SVR数据预测模型——差分进化算法附Matlab源代码

490 篇文章 34 订阅 ¥179.90 ¥299.90
457 篇文章 51 订阅 ¥99.90 ¥299.90
本文介绍了一种提高支持向量回归(SVR)模型精度的方法,即结合差分进化算法(DE)优化SVR的超参数C和ε。通过数据准备、DE算法参数初始化、SVR超参数初始化、模型训练、超参数优化和模型验证,实现了更精确的预测效果。附带了Matlab源代码以供实现。
摘要由CSDN通过智能技术生成

优化SVR数据预测模型——差分进化算法附Matlab源代码

为了提高支持向量回归(Support Vector Regression, SVR)模型的精度和性能,本文提出了一种基于差分进化算法(Differential Evolution, DE)的优化策略。该方法将DE算法应用于SVR中的超参数优化,通过优化C和ε参数寻找最优解以达到更好的预测效果。

具体实现过程如下:

  1. 数据准备

准备需要训练的数据集和验证集。

  1. 初始化DE算法参数

初始化DE算法的参数,包括种群大小、迭代次数等。

  1. 初始化SVR超参数

随机初始化C和ε的值。

  1. 训练SVR模型

使用训练集进行SVR模型的训练,并计算出误差。

  1. 优化超参数

应用DE算法对C和ε进行优化,在每次迭代中计算适应度并更新C和ε的值。

  1. 验证模型

使用验证集测试优化后的SVR模型,计算出测试误差。

  1. 结果分析

分析优化前后的性能表现差异,并比较不同算法的结果。

下面是本文的Matlab源代码,包括DE算法和SVR模型的实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NoABug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值