
Matlab基础与实战
文章平均质量分 55
本专栏主要介绍一些关于Matlab的基础知识和Matlab相关的应用,以及一些试用Matlab实现一些算法。
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
普通网友
这个作者很懒,什么都没留下…
展开
-
基于Matlab的暗通道先验去雾算法
从实验结果中可以看出,基于Matlab的暗通道先验去雾算法能够有效地去除雾霾,还原出更加清晰、真实的图像。算法的核心在于暗通道先验理论的应用,通过寻找图像中的暗通道来求解大气光照强度和透射率,最终得到去雾后的图像。也就是说,在一幅有雾图像中,虽然每个像素点的深度不同,但它们差不多都会接近于某个值,这个值在整个图像上都大致相同。近年来,随着人们对图像质量的不断追求,图像去雾技术也得到了广泛的应用。1.预处理:通过寻找图像每个区域的暗通道,确定整张图像的大气光照强度A以及透射率t(x)。g=J(:,:,2);原创 2023-08-12 05:29:29 · 544 阅读 · 0 评论 -
Matlab 数组矩阵操作
在 Matlab 中,数组和矩阵的操作是非常方便的,能够高效地完成各种数值计算任务。通过学习本文,你将掌握如何创建和操作数组和矩阵。本文介绍了 Matlab 中数组和矩阵的创建、索引、切片和运算操作,这些基础操作可以应用于各种数值计算和科学工程领域。Matlab 支持各种数值计算操作,包括常见的加、减、乘、除、求幂等。Matlab 支持 Python 中类似的数组切片语法。Matlab 中的数组索引从 1 开始。的矩阵 A,其中包含数字 1 到 9。Matlab 数组矩阵操作。原创 2023-08-11 00:19:05 · 135 阅读 · 0 评论 -
Matlab:分类数组核心函数实战解析
上述代码中,我们定义了一个数组a,然后使用categorical()函数将其转换为分类数组b,最后使用ismember()函数筛选出分类数组中是否有类别为1的元素。上述代码中,我们定义了一个数组a,然后使用categorical()函数将其转换为分类数组b,最后使用countcats()函数计算该分类数组中各类别出现的次数。上述代码中,我们定义了一个数组a,然后使用categorical()函数将其转换为分类数组b,最后使用sort()函数对分类数组进行排序。1.分类函数——categorical()原创 2023-08-11 00:18:25 · 983 阅读 · 0 评论 -
基于MATLAB实现的语音信号谱减法去噪
语音信号是一种普遍存在于我们生活中的重要信息载体,但由于各种原因(如信号传输过程中的干扰、加噪等),信号往往会受到噪声的影响,从而影响信号的质量和可用性。下面我们将通过MATLAB代码实现一个简单的语音信号谱减法去噪程序,该程序实现了一个基于傅里叶变换的频域信号处理过程,用于去除加性噪声。谱减法是目前比较常用的一种语音信号去噪方法,其基本思想是在频域上对信号的谱进行分析和处理。该程序经过测试,在实际应用中具备一定的去噪效果,用户可以根据实际情况针对性地调整参数以获得最优的去噪效果。原创 2023-08-11 00:17:45 · 468 阅读 · 0 评论 -
Verilog编程:设计FPGA计算差值的电路
在数字电路设计中,计算器是最基础的电路之一,它可以完成加、减、乘、除等数学运算。在这个过程中,我们首先对第二个数进行取反操作,然后与第一个数相加,最后再加上一个1。这样可以得到两数的差值。请注意,生成的结果需要我们手动进行符号扩展操作,否则差值将被错误地解释为一个无符号整数。根据减法原理,我们可以通过将被减数取反,再加上减数的方式,得到两数的差值。本案例中,输入端口为两个8位数据,输出端口为一个8位数据,表示两个数的差值。测试模块通过输入不同的数值对设计的减法电路进行测试,并对预期输出值进行验证。原创 2023-08-11 00:17:05 · 243 阅读 · 0 评论 -
基于Elman神经网络的负荷预测研究及源代码
具体来说,我们将数据集按照80%的比例划分为训练集和测试集,其中训练集用于训练神经网络,测试集用于评估神经网络的性能。由于Elman神经网络需要输入特定的格式,我们首先需要将数据按照时间窗口进行切分,每个时间窗口包含t个连续时间点的负荷值。在本篇文章中,我们将隐藏层的节点数设置为10。在预测过程中,我们首先需要将测试集按照同样的时间窗口进行切分,并将其输入到神经网络中进行预测。Elman神经网络是一种常用的人工神经网络模型,其具有反馈连接的特点,可以对序列数据进行建模,并被广泛应用于各个领域的预测问题中。原创 2023-08-11 00:16:24 · 117 阅读 · 0 评论 -
基于Matlab Kolmogorov理论结合次谐波补偿大气湍流相位屏
综上所述,本文基于Matlab Kolmogorov理论结合次谐波补偿技术,实现了大气湍流相位畸变的优化,并进行了仿真模拟,结果表明该技术达到了较好的效果,可用于光学系统成像和通信等领域。首先,我们需要确定适当的大气湍流参数,包括热膨胀系数、风速和风向等,然后在Matlab中计算并生成大气湍流相位屏。本文针对大气湍流引起的相位畸变问题,采用基于Matlab的Kolmogorov理论结合次谐波补偿技术进行优化的相位屏技术,并进行仿真模拟验证性能。的理想大气模型,因而可以通过计算得到大气湍流相位屏。原创 2023-08-11 00:15:44 · 613 阅读 · 0 评论 -
Matlab:使用解析解进行多项式积分计算
而多项式积分是其中的一种比较简单的形式,Matlab也提供了相应的函数用于求解。但是,更加优化的方式是使用解析解进行计算,可以提高计算效率。函数得到了它的积分结果。接着,我们按照上述公式,计算了每一项的解析解积分结果,并对其进行求和,得到了多项式的解析解积分结果。通过这种方式,不仅可以加深对于多项式积分的理解,也可以提高计算效率,满足实际应用中的需求。解析解的计算方法就是将多项式进行展开,再求解各项之间的积分。的积分公式进行推导,得到它们的具体表达式,进而得到多项式的积分形式。其中,我们定义了一个多项式。原创 2023-08-11 00:15:04 · 297 阅读 · 0 评论 -
标准PSO算法辨识NARMAX模型的Matlab实现
其中,'lag’参数指定了输出变量和输入变量的滞后阶数,'inputdelay’参数指定了输入变量的延迟阶数。'polyorder’参数指定了多项式阶数,'time’参数指定了模拟时间段,'noise’参数指定了噪声大小。其中,'SwarmSize’参数指定了粒子群的大小,'MaxIterations’参数指定了迭代次数,'Display’参数指定了输出优化过程的信息。其中,'data’变量是已知的实验数据,'pem’函数是Matlab中的参数估计函数,'Focus’参数指定了模拟和预测的时间段。原创 2023-08-11 00:14:24 · 194 阅读 · 0 评论 -
基于MATLAB的停车动力学仿真模拟
因此,本文将介绍如何使用MATLAB进行停车动力学的仿真模拟,并通过实例演示如何评估停车的表现。例如,当初始速度为20m/s时,停车时的减速度为2.4m/s^2,总共行驶了87.5m的距离后车辆才完全静止。在建立好停车动力学的仿真模型后,我们可以使用实例进行测试和分析。例如,在下面的实例中,我们将对各种参数进行设置,并分析停车时的减速度、制动距离等因素。在MATLAB中,我们可以使用Simulink自带的仿真工具,也可以使用代码进行仿真实验。我们设置PID控制器的参数为:P=100,I=50,D=10。原创 2023-08-11 00:13:44 · 198 阅读 · 0 评论 -
【FPGA时钟设计第二天】- 时钟与时序约束
以上是一个简单的FPGA设计,输入端口为in1,输出端口为out1,时钟信号为clk。时钟约束是FPGA设计中的一种基本约束,它规定了FPGA内部时钟的频率和时钟的相位。时钟相位是指时钟信号的起始时间,通常以时钟周期的一半为基准。时钟约束可以通过设置“时钟分配器”来实现,这是一个FPGA内部的模块,它解释时钟的频率和时钟相位。因此,在进行FPGA设计时,需要仔细考虑时钟和时序约束的参数设置,并进行适当的调整,以满足设计的需求。本文将介绍如何有效地应用时钟和时序约束,以保证FPGA设计的正确性和可靠性。原创 2023-08-11 00:13:03 · 189 阅读 · 0 评论 -
优化BP神经网络分类的萤火虫算法实现及matlab代码
在优化BP神经网络中,可以将BP神经网络的权值和阈值看成是萤火虫的位置,误差函数看成是萤火虫亮度,根据萤火虫间的亮度和距离计算互相吸引的力,从而更新位置。BP神经网络是常见的一种前向反馈神经网络,其通过学习训练样本中的输入输出关系,从而实现对未知数据的预测。本文介绍了如何使用萤火虫算法优化BP神经网络进行数据分类,并提供了相应的matlab代码。通过实验可以发现,使用萤火虫算法优化的BP神经网络在iris数据集上取得了较好的分类效果。优化BP神经网络分类的萤火虫算法实现及matlab代码。原创 2023-08-09 10:50:14 · 154 阅读 · 0 评论 -
基于分水岭算法的图像分割——附带Matlab源代码
基于分水岭算法的图像分割将图像看作地形图,将图像中的每个像素点当作山峰上的一个水滴,然后向周围流动,直到流入一个“低谷”(即分水岭),从而实现对图像的分割。简单来说,通过在图像中构建不同的“分水岭”,将图像分成多个不同的区域。其中,基于分水岭算法的图像分割方法因其简单易懂、快速有效而备受研究者们的青睐。本文将为大家介绍如何使用Matlab实现基于分水岭算法的图像分割,并提供相应的源代码。通过本文,我们详细介绍了基于分水岭算法的图像分割方法,并提供了相关的Matlab源代码。原创 2023-08-09 10:49:33 · 211 阅读 · 0 评论 -
卷积神经网络在图像处理中的应用
1、卷积层:卷积操作是卷积神经网络中最重要的操作之一,其作用是通过滤波器对输入数据进行卷积操作,提取数据中的特征。卷积操作的具体计算方法为:将一个滤波器从图像的左上角开始按照步长进行扫描,每一次将滤波器与对应的图像区域进行点乘并求和,得到一个输出的单个数值,最后将所有的数值组成一个新的图像即为卷积后的结果。3、构建卷积神经网络:构建一个简单卷积神经网络模型,包含两个卷积层、两个池化层和两个全连接层。2、池化层:池化层一般紧随在卷积层之后,其作用是对卷积层输出的特征图进行降维处理,减小数据的尺寸和复杂度。原创 2023-08-09 10:48:53 · 627 阅读 · 0 评论 -
Matlab:访问类成员变量和方法
在 Matlab 中,可以使用面向对象编程的方式创建类并定义类的属性和方法。当类创建完成后,我们可以实例化一个对象,并通过该对象来访问类的成员变量和方法。除了直接访问成员变量和方法之外,还可以使用访问器函数(accessor function)来设置和获取成员变量的值。综上所述,本文介绍了如何访问 Matlab 类的成员变量和方法,包括直接访问和访问器函数两种方式。需要注意的是,访问器函数可以被视为类成员变量和方法的一种更加封装的访问方式。需要注意的是,访问类成员变量和方法时,要使用。初始化了其成员变量。原创 2023-08-09 10:48:13 · 271 阅读 · 0 评论 -
改进粒子群算法调度微网多目标优化
多目标优化调度是微网的一个重要问题,旨在使微网在满足负荷需求的同时,尽可能地减少能源损失和碳排放量。为了解决这个问题,本文提出了一种基于改进粒子群算法(PSO)的微网多目标优化调度方法,并通过Matlab实现。通过对比不同粒子数和不同迭代次数的实验结果,可以发现,当粒子数为50时,算法的运行效率和效果已经很好,此时增加粒子数并不会显著提高算法的性能;实验结果表明,该方法能够有效地求解微网多目标优化调度问题,为微网的运行规划和优化提供了重要的参考依据。的多目标优化问题,目标函数之间存在相互制约的关系。原创 2023-08-09 10:47:33 · 109 阅读 · 0 评论 -
粒子群算法优化BP神经网络预测温度
BP神经网络是一种常用的神经网络模型,其通过对样本数据进行有监督的训练,优化神经元的权重值,从而使得训练好的神经网络能够对未知数据的输出进行预测。在过去的几十年里,由于计算机技术的进步和神经网络算法的应用,通过对历史数据的学习,用神经网络进行温度预测已经成为了一种行之有效的方法。同时,我们还学习了另一种优化神经网络的算法——粒子群算法,并通过MATLAB实现了基于粒子群算法优化BP神经网络预测温度的源代码。(3)粒子的移动和更新:根据粒子群中每个粒子的位置和速度,更新权重值并计算新的适应度。原创 2023-08-09 10:46:52 · 156 阅读 · 0 评论 -
汉明窗、海宁窗、布莱克曼窗在信号处理中的应用
汉明窗、海宁窗和布莱克曼窗是比较经典的窗函数,本文将介绍这三种窗函数在信号处理中的应用以及相应的MATLAB代码实现。以上三种窗函数都是信号处理中比较常用的窗函数,不同的窗函数在不同的场景下有着不同的应用。w(n)=0.42-0.5cos(2πn/(N-1))+0.08cos(4πn/(N-1)),其中N为窗口长度,n为从0到N-1的整数。w(n)=cos²(πn/N)×[1-(2n/(N-1))^2],其中N为窗口长度,n为从0到N-1的整数。汉明窗、海宁窗、布莱克曼窗在信号处理中的应用。原创 2023-08-09 10:46:12 · 1398 阅读 · 0 评论 -
基于双随机相位编码和压缩感知的图像加密
通过以上代码实现,可以对输入的lena.jpg图像进行加密、压缩感知编码和解密操作,并得到解密后的明文图像lena_decrypted.png。解密的过程与加密的过程相反,首先通过随机矩阵实现压缩感知解码,然后将压缩后的频域图像转换回空域图像,并使用相应的解密密钥进行解密操作,得到明文图像。综上所述,本文提出的基于双随机相位编码和压缩感知的图像加密方案具有一定的安全性、稳健性和效率性,可以在实际应用中起到积极作用。原创 2023-08-09 10:45:32 · 236 阅读 · 0 评论 -
基于MATLAB的多无人机协同目标运输任务
路径规划和转移:一旦目标物体被分配给某个无人机,该无人机需要规划合适的路径,并进行物体的转移。跟踪与控制:在物体转移过程中,无人机需要实时跟踪目标物体的位置,并进行相应的控制。总之,MATLAB提供了丰富的工具箱和功能,可以方便地实现多无人机协同目标运输任务。当然,这只是一个简单的示例,实际应用中还需要考虑更多的因素和细节。例如,设置无人机的初始位置、速度、航向等信息,目标物体的位置和重量等信息。在多无人机协同目标运输任务中,我们需要设计一个算法来使得多台无人机能够协同工作,完成对目标物体的运输。原创 2023-08-09 10:44:51 · 254 阅读 · 0 评论 -
Matlab 实现基于 DBSCAN 算法的超像素分割
DBSCAN 算法可以将点集划分为密度相连的点集,即某个点的密度达到一定值时,该点所在的区域被视为一个簇。传统的 DBSCAN 算法针对的是二维平面上的点集,而在超像素分割中,我们需要使用 DBSCAN 算法对图像像素进行聚类。遍历每个点,对于每个点,计算其 eps-邻域内的点集,如果邻域内的点数量大于等于 minPts 设定的值,则该点为核心对象,并将其加入到 C 中。如果该点是边界点,则将其加入到当前簇中。对于每个新发现的点,更新其 visited 状态,重复步骤 4 直到簇中不再有新的点被添加。原创 2023-08-09 10:44:11 · 201 阅读 · 0 评论 -
基于Matlab的灰狼优化算法求解多目标优化问题
例如,在设计一个机器人时,我们需要同时考虑机器人的速度和稳定性,但是速度和稳定性往往是相互制约的。因此,如何有效地解决多目标优化问题,成为了现代优化算法中的一个重要研究方向。灰狼优化算法是一种新兴的算法,其具有收敛速度快、精度高、易于实现等优点,在多目标优化问题中具有广泛的应用前景。本文将介绍使用Matlab对多目标优化问题进行灰狼优化算法求解的方法,并给出相应的源代码。相信本文对读者对于多目标优化和灰狼优化算法有一定的了解,并能够在实际工程领域中应用该算法来解决复杂的优化问题。原创 2023-08-08 22:19:22 · 318 阅读 · 0 评论 -
基于BP神经网络实现交通标志识别系统-附matlab代码
我们采用了一个两层的BP神经网络进行交通标志识别,其中输入层共有1024个神经元(对应32x32像素),隐层为64个神经元,输出层为40个神经元(对应40种交通标志)。将32x32的图像转换成1024维的向量后,我们先对数据进行了归一化处理,将灰度值范围从0到255缩放至0到1之间。本文介绍了如何使用BP神经网络实现交通标志识别系统,并提供了相关的matlab代码实现。在经过50次迭代训练后,BP神经网络在测试集上的准确率可以达到97.5%左右,说明其识别效果非常良好。%% BP神经网络训练。原创 2023-08-08 22:18:01 · 345 阅读 · 0 评论 -
基于MUSIC算法的信号方向估计——MATLAB实现
MUSIC(Multiple Signal Classification)算法是一种在阵列信号处理中经常使用的方法,它可以对接收到的信号进行空时分析,从而估计出信号源的角度。这可以通过MATLAB的“range()”函数实现,该函数返回信号从阵列到信号源的距离。这可以通过MATLAB的“ula()”函数实现,该函数返回一个线性阵列对象,您可以在其中定义阵列的参数。然后,我们要生成一个包含具有不同角度的信号源的脉冲信号。这可以通过使用MATLAB中的“music()”函数来实现,该函数返回脉冲信号的谱形成。原创 2023-08-08 22:17:05 · 505 阅读 · 0 评论 -
QPSK和16QAM基带信号解调误比特率的理论限制与Matlab仿真对比
QPSK(Quadrature Phase Shift Keying,即四相移键控)和16QAM(16-ary Quadrature Amplitude Modulation,即16进制正交振幅调制)是常见的调制技术,本文将探讨它们的基带信号解调误比特率的理论限制以及使用Matlab进行仿真的对比分析。通过理论公式与Q函数,我们得到了QPSK和16QAM的理论误比特率限制,并使用Matlab进行了仿真分析。通过以上Matlab代码,我们可以绘制出QPSK和16QAM的误比特率性能曲线,与理论限制进行对比。原创 2023-08-08 22:16:25 · 1103 阅读 · 0 评论 -
基于CFAR算法的海面SAR图像目标检测及Matlab实现
CFAR算法的核心思想是采用一个相对窄的移动窗口扫描回波信号,对每个窗口内的数据进行处理,使得窗口内信号统计特性的变化远远小于目标信号与背景噪声的差异。CFAR算法的优越性在目标检测领域中得到了广泛的应用,同时还可以通过采用多种优化方法来提高算法的检测性能。CFAR算法在海面SAR目标检测中有一些不足之处,比如在信噪比较低或目标尺寸较小时,检测率下降甚至无法检测到目标。2.1 窗口设置:设置需要检测目标的窗口大小,在海面SAR目标检测中,常用的窗口大小为3x3或5x5。二、海面SAR图像目标检测过程。原创 2023-08-08 22:15:45 · 748 阅读 · 0 评论 -
MATLAB自然样条函数
因此,在使用自然样条插值进行数据拟合时,需要对数据集进行仔细的分析,以确保生成的曲线与实际情况相符。自然样条插值是一种广泛使用的数据拟合方法,它可以将给定的散点数据用平滑的曲线进行拟合,并且通过对曲线进行二阶导数的限制来避免拟合过程中出现震荡和高频噪声。总之,MATLAB 中的自然样条插值函数 spline 不仅易于使用,而且在保持平滑曲线的同时提供了灵活性和准确性。其中 x 和 y 是指定散点数据的向量,xx 是要求的插值点,y 对应于插值点的函数值将被返回到 y 中。MATLAB自然样条函数。原创 2023-08-08 22:15:04 · 4484 阅读 · 0 评论 -
基于CS算法实现星载合成孔径雷达数据成像附matlab源代码
在SAR数据处理中,由于成像所需的原始数据量巨大,要求传输及存储设备的带宽和容量非常大,增加了数据处理的难度和成本。CS算法通过采样数据的稀疏性,以较低的采样率获取足够的信息,从而实现对原始数据的高效压缩和重构。通过该代码,读者可以了解到如何对SAR数据进行预处理、CS算法的实现和SAR图像的生成。本文提供的代码仅为示范性质,读者可以根据自身需求对代码进行修改和优化。本文基于CS算法,在matlab环境下实现对合成孔径雷达(SAR)星载观测数据的成像处理,并提供相应的源代码,方便读者进行参考和使用。原创 2023-08-08 22:14:24 · 445 阅读 · 0 评论 -
Matlab中的条件语句——if和switch
如果“expression”的值等于某个“case_expression”的值,则执行与该情况相关联的语句。如果没有任何一个“case_expression”的值匹配“expression”的值,则执行“otherwise”块中的语句。由于“x”的值等于20,因此执行与第二个“case_expression”的相应语句,显示一条消息:“x is equal to 20”。其中,“condition”是一个逻辑表达式,当它的值为真时,就会执行“statements”中的代码块。原创 2023-08-08 22:13:43 · 886 阅读 · 0 评论 -
基于Matlab分形插值算法的图片转换
通过本文的介绍,我们可以了解到Matlab分形插值算法是一种非常常见的图像插值技术,其可以将原始图像进行放大或缩小,并保持其纹理和结构特征。使用Matlab实现基于分形插值算法的图像转换也十分简单,只需进行几个基本的步骤,就可以得到转换后的图像。其基本思想就是通过对原始图像进行分形分解,然后利用分形几何学中的自相似性原理,来生成新的图像。本文将介绍如何使用基于Matlab分形插值算法的技术,来实现图像的转换和处理,并且会给出相应的源码以供读者参考。(3). 使用变换矩阵来“填补”每个子区域,生成新的图像。原创 2023-08-08 22:13:03 · 250 阅读 · 0 评论 -
使用MATLAB进行三维曲面建模、颜色、透明度和动态变化等操作是MATLAB中一个非常有趣和实用的应用。这里我们以海浪曲面函数为例来进行介绍。
使用MATLAB进行三维曲面建模、颜色、透明度和动态变化等操作是MATLAB中一个非常有趣和实用的应用。这里我们以海浪曲面函数为例来进行介绍。通过以上的步骤,我们成功地使用MATLAB进行了海浪曲面的建模、颜色、透明度和动态变化等操作。循环中不断地更新函数的z值,并使用。表示使用彩虹色渐变颜色映射函数,函数实现停顿,从而达到动态效果。用于设置颜色模式为“插值色”,函数用于创建x和y的矩阵。用于设置边缘颜色为“无”,用于设置灯光的位置和类型,函数则用于计算sin值。用于设置面光照亮度,用于设置坐标轴范围,原创 2023-08-07 19:23:39 · 1085 阅读 · 0 评论 -
基于Matlab的纹理图像分割实现
其中,对纹理图像进行分割尤为具有挑战性,因为纹理图像中通常包含复杂的纹理和形状。在本文中,我们将探讨如何使用Matlab对纹理图像进行分割,并提供相应的源代码。接下来,我们将对图像进行分割。在这里,我们可以使用基于纹理特征的分割算法,如基于小波变换或Gabor滤波器的算法。由于时间和篇幅的限制,我们在此选择基于Gabor滤波器的算法作为示例。至此,我们已经完成了基于Matlab的纹理图像分割实现。然后,我们将读取纹理图像并对其进行预处理。例如,我们可以先对图像进行降噪,使其更易于处理。原创 2023-08-07 19:22:59 · 286 阅读 · 0 评论 -
FPGA JTAG接口连接:详解与实例演示
FPGA JTAG接口是一种串行接口,它通过与FPGA的JTAG端口相连,实现对FPGA内部逻辑的调试、配置和测试等功能。FPGA的JTAG引脚需要与JTAG模块进行连接,而JTAG模块可以是一种专门的硬件设备,也可以由PC机上的USB转串口模块等实现。以上源代码是一个简单的FPGA JTAG接口的模块化设计,通过对不同状态的控制,实现了从TDI输入数据并写入寄存器,再从寄存器读取数据并输出到TDO的功能。(1)直接连接:将FPGA的JTAG引脚与JTAG模块的对应引脚一一相连即可。原创 2023-08-07 19:22:19 · 5798 阅读 · 0 评论 -
MIPI DSI LLP介绍(十) FPGA
除此之外,在FPGA中,我们可以通过调整代码进行协议适配,适配更多的显示屏接口,实现更广泛的应用。MIPI DSI是面向移动应用设计的显示芯片数据传输接口标准,而FPGA则是一种灵活可编程的逻辑芯片,结合两者可以实现高效且具备灵活性的显示控制。同时还需要注意FPGA硬件的资源使用情况和时序参数的控制,以确保MIPI DSI协议的正确传输。总之,在FPGA中使用MIPI DSI协议可以实现高效灵活的显示控制,为移动设备和嵌入式系统提供更多的可扩展性和适配性,是当前移动设备设计中的重要技术手段之一。原创 2023-08-07 19:21:38 · 158 阅读 · 0 评论 -
Vivado约束基础: FPGA的关键步骤
Vivado约束是指在设计阶段限制FPGA的电气和时序特性以实现正确的功能。在约束过程中,设计人员必须考虑FPGA的电气和时序特性以确保正确的功能,并遵循最佳实践。以上我们介绍了约束文件、时钟约束、延迟约束和引脚分配约束,这些都是Vivado约束中的基础知识。它包含不同类型的约束,例如时钟约束、延迟约束和引脚分配等。这个代码表示了一个名为“clk”的时钟,其周期为10纳秒,并且该时钟的输入是FPGA的一个端口。这个代码表示了一个名为“clk”的时钟,其周期为10纳秒,并且该时钟的输入是FPGA的一个端口。原创 2023-08-07 19:20:58 · 310 阅读 · 0 评论 -
频域图像增强算法——Matlab实现
频域图像处理是针对图像的频率特性进行操作的图像处理方法,通过对图像的傅里叶变换进行处理,得到图像在频域上的表现形式,进而对其进行滤波、增强等操作,再通过逆变换将图像变换回空间域。在上述代码中,我们首先使用imhist函数计算出幅度谱的直方图,然后通过累积分布函数计算出均衡化后的灰度级分布,最终得到均衡化后的幅度谱。左边为原始图像,中间为直方图均衡化后的图像,右边为均衡化后的幅度谱。在上述代码中,我们先对幅度谱进行对数变换,然后将变换后的幅度谱与相位谱结合起来进行逆变换,最终得到了对数变换后的图像。原创 2023-08-07 19:20:18 · 542 阅读 · 0 评论 -
改进版otsu算法实现图像分割附matlab代码
具体来说,我们需要找到一个阈值T,将图像的像素点分为两类:小于T的像素点为一类,大于等于T的像素点为另一类。otsu算法的核心思想就是:找到一个合适的阈值,使得这个阈值对应的图像分割结果最优。通过图像分割,我们可以将图像数据按照不同的类别进行划分,从而更加有效地进行图像处理和特征提取等操作。以上是otsu算法的matlab实现代码,通过这个代码实现,我们可以将一张输入的原始图像进行分割。此外,在实际使用时,我们也可以对这个代码进行改进,从而使得它能更好地处理各种类型和质量的图像数据。原创 2023-08-07 19:19:38 · 439 阅读 · 0 评论 -
基于Matlab GUI和SVM的玉米种子破损识别
近年来,随着社会的发展和科技的进步,种植业也得到了不断的发展,目前在玉米生产中,一种重要的问题是如何对玉米种子进行快速、精确的破损检测。在此过程中,我们需要将待识别的玉米种子图像转换成特征向量形式,然后利用训练好的分类器进行分类,最后输出识别结果。(2)特征提取:用户可以点击该按钮来提取当前所选图像的特征向量,这里我们采用了SURF算法,同时加入了其他特征,包括面积、周长等。(4)测试分类器:用户可以将待识别的玉米种子图像转换成特征向量形式,然后利用已经训练好的SVM分类器进行分类,并输出识别结果。原创 2023-08-07 19:18:58 · 130 阅读 · 0 评论 -
Matlab 拐点法自适应k值
它主要基于随着聚类数量的增加,聚类效果会不断提高,但是随着聚类数量进一步增加,聚类效果的提升速度将会降低。因此,最优聚类数对应的聚类效果与聚类数量之间存在一个“拐点”,这个“拐点”可以用来确定最优聚类数。但是,传统的拐点法需要手动指定聚类数量,而且通常需要多次试验才能找到最优的聚类数量。最后,我们需要选择拐点处对应的聚类数量,这个聚类数量应该是误差平方和变化率最大的位置。在上面的代码中,我们先遍历一系列聚类数量(从 1 到 K),然后每次使用 K-means 算法聚类数据集,然后计算误差平方和。原创 2023-08-07 19:18:18 · 539 阅读 · 0 评论 -
基于Matlab的免疫算法优化旅行商问题求解
假设D(i,j)表示第i个城市到第j个城市的距离,那么旅行商问题的目标就是找到一个长度为N的路径P,使得总路径长度最小。通过合理设计算法步骤和参数取值,我们可以得到较优的路径解,并且免疫算法具有一定的全局搜索能力和鲁棒性,适用于解决旅行商问题等组合优化问题。在使用免疫算法求解旅行商问题时,我们可以根据实际情况调整参数的取值,以获得更好的求解效果。此外,还可以尝试其他改进的免疫算法,如多免疫算法、抗体-抗原算法等,以进一步提高求解效率和精度。通过运行上述代码,我们可以得到求解旅行商问题的最优路径和路径长度。原创 2023-08-07 19:17:38 · 174 阅读 · 0 评论