从一道趣味数学题引发的数论

原题:用0~9这十个数字组成是11的倍数的最大十位数是多少。

一开始的代码是当然是暴力破解啊

//用0~9这十个数字组成是11的倍数的最大十位数是多少。
#include <iostream>
#define ll long long
using namespace std;

int check(ll x)
{
	int a[10] = {0};
	while(x>0){
		ll temp = x%10;
		a[temp] = 1;
		x = x/10;
	}
	for(int i=0;i<10;i++){
		if(a[i]!=1){
			//重复
			return 0; 
		}
	}
	return 1;//不重复 
}

int eleven(ll x)
{
	if(x % 11 == 0){
		return 1; 
	}
	return 0;
}

int main(void)
{
	ll x = 9876543210;
	//哪些数是11的倍数 
	while(x>=1000000000){
		if(check(x)==1){
			//各个数字不重复,判断是否是11的倍数 
			 if(eleven(x)==1){
			 	//是11的倍数,输出 
			 	cout << x;
			 	return 0;
			 }
		}
		x--;
	}
	return 0;
}

得到结果

在这里插入图片描述

后来老师说

原理:若B进制的数是B+1的倍数,则奇数位数字和减去偶数位数字和为B+1的倍数

什么意思呢?举个例子。

二进制 101010 ,偶位数的和3 ,奇位数的和0,3-0=3

原理解释:若是2进制,则奇数位数字和减去偶数位数字的和为3(或3的倍数也行),则这个数即为3的倍数

因此,知道原理后代码如下:

oh~sorry,不需要代码,自己手算

详细参照:https://blog.csdn.net/lin_ty/article/details/94552954

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值