#include<iostream>
using namespace std;
const int maxn=100+5;
int w[maxn][maxn],n,m;
int lx[maxn],ly[maxn];
int Left[maxn];
bool s[maxn],t[maxn];
int a[maxn][maxn];
bool match(int i)
{
s[i]=true;
for(int j=1;j<=n;j++) if(lx[i]+ly[j]==w[i][j]&&!t[j]){
t[j]=true;
if(!Left[j]||match(Left[j])){
Left[j]=i;
return true;
}
}
return false;
}
void update()
{
int a=(1<<30);
for(int i=1;i<=n;i++) if(s[i])
for(int j=1;j<=n;j++) if(!t[j])
a=min(a,lx[i]+ly[j]-w[i][j]);
for(int i=1;i<=n;i++){
if(s[i]) lx[i]-=a;
if(t[i]) ly[i]+=a;
}
}
void KM()
{
for(int i=1;i<=n;i++){
Left[i]=lx[i]=ly[i]=0;
for(int j=1;j<=n;j++)
lx[i]=max(lx[i],w[i][j]);
}
for(int i=1;i<=n;i++){
for(;;)
{
for(int j=1;j<=n;j++) s[j]=t[j]=0;
if(match(i)) break;else update();
}
}
}
int main()
{
int T;
scanf("%d",&T);
for(int i=1;i<=T;i++)
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
w[i][j]=0;
for(int k=1;k<=m;k++)
w[i][j]-=abs(a[k][i]-j);
}
KM();
int ans=0;
for(int i=1;i<=n;i++) ans+=w[Left[i]][i];
printf("Case #%d: %d\n",i,-ans);
}
return 0;
}
HDU 3523 Image copy detection(KM)
Kuhn-Munkres 算法解析
最新推荐文章于 2020-01-02 09:38:48 发布
本文深入探讨了 Kuhn-Munkres (KM) 算法的实现细节,这是一种解决分配问题的经典算法,特别适用于求解最大权匹配问题。文中通过具体的 C++ 实现展示了如何为一个 n×n 的矩阵寻找最佳匹配方案,同时提供了完整的源代码及运行流程说明。
932

被折叠的 条评论
为什么被折叠?



