难度:4
模拟,不涉及一点算法,写了32分钟直接过了,有点惊喜的,而且题目里面的特判我没有写,想着先看看主干是不是对的,结果还是通过了,说明测试数据里面没有-1的情形
思路一开始想着在地图上模拟,这样子需要把奶牛放到中间,而且地图需要开的很大,因为是二维的,而奶牛只有四个脚,比较浪费,所以想到了直接对四只脚的坐标进行模拟,也就是x和y,记录中间的最大最小值,然后两个最值分别的差值相乘即可,
然后是具体实现,首先是要映射,把四只脚分别映射为0123,顺序是左上,右上,左下,右下,这个需要记住,看移动一只脚的操作,有个关键的地方是朝向,所以开一个变量记录朝向,对于横纵坐标,一般移动有四个方向,加上朝向,那么相当于变成二维,变成16个了,所以横纵坐标的增量数组就是那个样子开,一维表示朝向,二维表示操作,认为规定朝向0 1 2 3依次是北东南西,操作也是当前朝向下前右后左,与朝向相同,那么dx[0][0],就表示面朝北向前走,x横坐标的增量,其余同理,这里由于一开始的映射把0123占用了,所以映射向哪里走的操作的时候是4567,用的时候需要减去4,
然后是转向操作,这个先改变朝向,然后在纸上举个例子算一下,旋转之前,旋转点与基准点分别有横纵坐标的差值,旋转之后互换,也就是之前横坐标的差值变为纵坐标的差值了,这里横纵变化还有区别,纵坐标的差值旋转之后直接变成横坐标的差值,而横坐标的差值旋转之后变成纵坐标差值的负数,所以需要乘以一个-1,这样把三个点旋转一下就可以了,最后每次操作的最后统计一下横纵坐标的最值,就可以了
最后突然想到,为啥是y乘以-1,应该是题目里面只规定了顺时针旋转的规则,如果是逆时针的话那么就要x乘以-1了,这也是这个题新遇到的一个模型,以一个基准点,顺时针逆时针旋转其它点。
#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mk make_pair
#define sz(x) ((int) (x).size())
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long ll;
typedef vector<int> vi;
typedef pair<int, int> pa;
int dx[4][4] = {0, 1, 0, -1, 1, 0, -1, 0, 0, -1, 0, 1, -1, 0, 1, 0};
int dy[4][4] = {1, 0, -1, 0, 0, -1, 0, 1, -1, 0, 1, 0, 0, 1, 0, -1};
int main() {
map<string, int> mp;
mp["FL"] = 0;
mp["FR"] = 1;
mp["RL"] = 2;
mp["RR"] = 3;
mp["F"] = 4;
mp["R"] = 5;
mp["B"] = 6;
mp["L"] = 7;
pa p[4];
p[0] = mk(0, 1);
p[1] = mk(1, 1);
p[2] = mk(0, 0);
p[3] = mk(1, 0);
int max1 = 1, min1 = 0;
int max2 = 1, min2 = 0;
int n;
cin >> n;
int face = 0;
int ok = 1;
for (int i = 0; i < n; i++) {
string op;
cin >> op;
int t = mp[op.substr(0, 2)];
if (op[2] == 'P') {
face = (face + 1) % 4;
for (int i = 0; i < 4; i++) {
if (i == t) continue;
int x = p[i].fi - p[t].fi;
int y = p[i].se - p[t].se;
swap(x, y);
y *= -1;
p[i].fi = x + p[t].fi;
p[i].se = y + p[t].se;
}
} else {
int tt = mp[op.substr(2, 1)];
p[t].fi += dx[face][tt - 4];
p[t].se += dy[face][tt - 4];
for (int i = 0; i < 4; i++) {
if (i == t) continue;
if (p[i] == p[t]) ok = 0;
}
}
for (int i = 0; i < 4; i++) {
max1 = max(max1, p[i].fi);
min1 = min(min1, p[i].fi);
max2 = max(max2, p[i].se);
min2 = min(min2, p[i].se);
}
}
if (!ok) cout << -1;
else cout << (max1 - min1 + 1) * (max2 - min2 + 1);
return 0;
}
5063

被折叠的 条评论
为什么被折叠?



