机器学习之梯度下降法

1.基本概念

  • 梯度下降法(Gradient descent)是一个一阶最优化算法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。

2.几种梯度下降方法(针对线性回归算法)

2.1 批量梯度下降法

1.批量梯度下降法的特点及原理
在这里插入图片描述

  • 运算量大:批量梯度下降法中的每一项计算:在这里插入图片描述,要计算所有样本(共 m 个);
  • 批量梯度下降法的梯度是损失函数减小最快的方向,也就是说,对应相同的 theta 变化量,损失函数在梯度方向上的变化量最大;
  • 梯度是优化的方向,损失函数的变量 theta 的变化量 = 学习率 X 当前梯度值

2.2 随机梯度下降法(SGD)

1.随机梯度下降法的原理,特点
在这里插入图片描述

  • 新的搜索方向计算公式(也即是优化的方向):在这里插入图片描述
  • 此处称为搜索方向,而不是梯度的计算公式,因为此公式已经不是梯度公式,而表示优化损失函数的方向;
  • 随机梯度下降法的搜索路径:
    在这里插入图片描述
  • 特点:
    每一次搜索的方向,不能保证是损失函数减小的方向;
    每一次搜索的方向,不能保证是损失函数减小最快的方向;
    其优化方向具有不可预知性;
  • 意义:
    实验结论表明,即使随机梯度下降法的优化方向具有不可预知性,通过此方法依然可以差不多来到损失函数最小值的附近,虽然不像批量梯度下降法那样,一定可以来到损失函数最小值位置,但是,如果样本数量很大时,有时可以用一定的模型精度,换取优化模型所用的时间;

2.3 小批量梯度下降法

是批量梯度法和随机梯度法的折中。

3.自己的梯度下降法的实现(针对线性回归算法)

3.1 批量梯度和随机梯度下降法实现

1.向量化的方式实现(封装好)

import numpy as np
from .metrics import r2_score

class LinearRegression:

    def __init__(self):
        """初始化Linear Regression模型"""
        self.coef_ = None
        self.intercept_ = None
        self._theta = None

    def fit_normal(self, X_train, y_train):
        """根据训练数据集X_train, y_train训练Linear Regression模型"""
        assert X_train.shape[0] == y_train.shape[0], \
            "the size of X_train must be equal to the size of y_train"

        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)

        self.intercept_ = self._theta[0]
        self.coef_ = self._theta[1:]

        return self

    def fit_bgd(self, X_train, y_train, eta=0.01, n_iters=1e4):
        """根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型"""
        assert X_train.shape[0] == y_train.shape[0], \
            "the size of X_train must be equal to the size of y_train"

        def J(theta, X_b, y):
            try:
                return np.sum((y - X_b.dot(theta)) ** 2) / len(y)
            except:
                return float('inf')

        def dJ(theta, X_b, y):
            return X_b.T.dot(X_b.dot(theta) - y) * 2. / len(y)

        def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8):

            theta = initial_theta
            cur_iter = 0

            while cur_iter < n_iters:
                gradient = dJ(theta, X_b, y)
                last_theta = theta
                theta = theta - eta * gradient
                if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
                    break

                cur_iter += 1

            return theta

        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        initial_theta = np.zeros(X_b.shape[1])
        self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters)

        self.intercept_ = self._theta[0]
        self.coef_ = self._theta[1:]

        return self

    def fit_sgd(self, X_train, y_train, n_iters=50, t0=5, t1=50):
        """根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型"""
        assert X_train.shape[0] == y_train.shape[0], \
            "the size of X_train must be equal to the size of y_train"
        assert n_iters >= 1

        def dJ_sgd(theta, X_b_i, y_i):
            return X_b_i * (X_b_i.dot(theta) - y_i) * 2.

        def sgd(X_b, y, initial_theta, n_iters=5, t0=5, t1=50):

            def learning_rate(t):
                return t0 / (t + t1)

            theta = initial_theta
            m = len(X_b)
            for i_iter in range(n_iters):
                indexes = np.random.permutation(m)
                X_b_new = X_b[indexes,:]
                y_new = y[indexes]
                for i in range(m):
                    gradient = dJ_sgd(theta, X_b_new[i], y_new[i])
                    theta = theta - learning_rate(i_iter * m + i) * gradient

            return theta

        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        initial_theta = np.random.randn(X_b.shape[1])
        self._theta = sgd(X_b, y_train, initial_theta, n_iters, t0, t1)

        self.intercept_ = self._theta[0]
        self.coef_ = self._theta[1:]

        return self

    def predict(self, X_predict):
        """给定待预测数据集X_predict,返回表示X_predict的结果向量"""
        assert self.intercept_ is not None and self.coef_ is not None, \
            "must fit before predict!"
        assert X_predict.shape[1] == len(self.coef_), \
            "the feature number of X_predict must be equal to X_train"

        X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
        return X_b.dot(self._theta)

    def score(self, X_test, y_test):
        """根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""

        y_predict = self.predict(X_test)
        return r2_score(y_test, y_predict)

    def __repr__(self):
        return "LinearRegression()"

<注> fit_bgd中使用的就是批量梯度下降方法,eta代表学习率。J代表误差函数值,dJ表示某点的梯度。而fit_sgd使用的是随机梯度下降法。

4.scikit-learn中的随机梯度法

from sklearn.linear_model import SGDRegressor
sgd_reg = SGDRegressor()
%time sgd_reg.fit(X_train_standard,y_train)
sgd_reg.score(X_test_standard,y_test)

sgd_reg = SGDRegressor(n_iter_no_change=100)
%time sgd_reg.fit(X_train_standard,y_train)
sgd_reg.score(X_test_standard,y_test)

5.使用真实的数据来测试SGD

from sklearn import datasets

boston = datasets.load_boston()
X = boston.data
y = boston.target

X = X[y<50.0]
y = y[y<50.0]

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size= 0.2,random_state=666)

from sklearn.preprocessing import StandardScaler
standardScaler = StandardScaler()
standardScaler.fit(X_train,y_train)
X_train_standard = standardScaler.transform(X_train)
X_test_standard = standardScaler.transform(X_test)

from sklearn.linear_model import SGDRegressor
sgd_reg = SGDRegressor(n_iter_no_change=100)
%time sgd_reg.fit(X_train_standard,y_train)
sgd_reg.score(X_test_standard,y_test)

上面代码的流程就是使用梯度下降法 的一般流程:包括,提取数据特征,训练,测试集分开,数据的标准化,回归模型的搭建。

6.梯度的调试(其中DJ-debug可以适用所有函数求梯度

import numpy as np
import matplotlib.pyplot as plt
np.random.seed(666)
X = np.random.random(size=(1000, 10))

true_theta = np.arange(1, 12, dtype=float)
X_b = np.hstack([np.ones((len(X), 1)), X])
y = X_b.dot(true_theta) + np.random.normal(size=1000)
true_theta
X.shape
y.shape
def J(theta, X_b, y):
    try:
        return np.sum((y - X_b.dot(theta))**2) / len(X_b)
    except:
        return float('inf')
def dJ_math(theta, X_b, y):
    return X_b.T.dot(X_b.dot(theta) - y) * 2. / len(y)
def dJ_debug(theta, X_b, y, epsilon=0.01):
    res = np.empty(len(theta))
    for i in range(len(theta)):
        theta_1 = theta.copy()
        theta_1[i] += epsilon
        theta_2 = theta.copy()
        theta_2[i] -= epsilon
        res[i] = (J(theta_1, X_b, y) - J(theta_2, X_b, y)) / (2 * epsilon)
    return res
def gradient_descent(dJ, X_b, y, initial_theta, eta, n_iters = 1e4, epsilon=1e-8):
    
    theta = initial_theta
    cur_iter = 0

    while cur_iter < n_iters:
        gradient = dJ(theta, X_b, y)
        last_theta = theta
        theta = theta - eta * gradient
        if(abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
            break
            
        cur_iter += 1

    return theta
X_b = np.hstack([np.ones((len(X), 1)), X])
initial_theta = np.zeros(X_b.shape[1])
eta = 0.01

%time theta = gradient_descent(dJ_debug, X_b, y, initial_theta, eta)
theta
%time theta = gradient_descent(dJ_math, X_b, y, initial_theta, eta)
theta
%time theta = gradient_descent(dJ_math, X_b, y, initial_theta, eta)

可以通过DJ_debug的方法来验证DJ_math方法推导的是否正确。DJ_debug求梯度是按导数的定义的方式来求的,其适用于任何的损失函数。对应求出的都是线性回归中系数θ值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>