1 基本概念
- PCA即主成分分析技术。主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
- 在统计学中,主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
- 主成分分析经常用于减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。
2 原理与数学推导
1.主成分分析使用的是梯度上升法。
特点
原理:

数学推导:



3 自己实现PCA算法
3.1 利用梯度上升法模拟实现PCA
1.数据的模拟准备
import numpy as np
import matplotlib.pyplot as plt
X = np.empty((100, 2))
X[:,0] = np.random.uniform(0., 100., size=100)
X[:,1] = 0.75 * X[:,0] + 3. + np.random.normal(0, 10., size=100)
plt.scatter(X[:,0], X[:,1])
plt.show()

2.demean操作(对每一特征,按X的列进行均值归0操作)
def demean(X):
return X - np.mean(X, axis=0)
X_demean = demean(X)

3.使用梯度上升法
def f(w, X):
return np.sum((X.dot(w)**2)) / len(X)
def df_math(w, X):
return X.T.dot(X.dot(w)) * 2. / len(X)
def df_debug(w, X, epsilon=0.0001):
res = np.empty(len(w))
for i in range(len(w)):
w_1 = w.copy()
w_1[i] += epsilon
w_2 = w.copy()
w_2[i] -= epsilon
res[i] = (f(w_1, X) - f(w_2, X)) / (2 * epsilon)
return res
def direction(w):
return w / np.linalg.norm(w) # 对向量进行单位化
def gradient_ascent(df, X, initial_w, eta, n_iters = 1e4, epsilon=1e-8):
w = direction(initial_w)
cur_iter = 0
while cur_iter < n_iters:
gradient = df(w, X)
last_w = w
w = w + eta * gradient
w = direction(w) # 注意1:每次求一个单位方向
if(abs(f(w, X) - f(last_w, X)) < epsilon):
break
cur_iter += 1
return w
initial_w =np.random.random(X.shape[1]) # 注意2 不能从0向量开始
w = gradient_ascent(df_math,X_demean,initial_w,eta)
plt.scatter(X_demean[:,0],X_demean[:,1])
plt.plot([0,w[0]*30],[0,w[1]*30],color = 'r')
plt.show()
注意3:不能使用StandardScaler标准化数据

4.上面求出的是第一主成分分量,若求其他主成分分量需减掉第一主成分分量再放入其中进行求解。
#其他主成分分量
X2 = np.empty(X.shape)
for i in range(len(X)):
X2[i] = X[i] - X[i].dot(w)*w #去掉第一主成分分量
#或可以表示为
X2 = X - X.dot(w).reshape(-1,1)*w
5.求前n个主成分分量
def first_n_components(n,X,eta=0.01,n_iters=1e4,epsilon=1e-8):
X_pca = X.copy()
X_pca = demean(X_pca)
res = [] # 存放主成分
for i in range(n):
initial_w = np.random.random(X_pca.shape[1])
w = first_component(df,X_pca,initial_w,eta)
res.append(w)
X_pca = X_pca - X_pca.dot(w).reshape(-1,1)*w
return res
first_n_components(2,X) #调用
5.自己实现的PCA并将其封装
import numpy as np
class PCA:
def __init__(self, n_components):
"""初始化PCA"""
assert n_components >= 1, "n_components must be valid"
self.n_components = n_components
self.components_ = None
def fit(self, X, eta=0.01, n_iters=1e4):
"""获得数据集X的前n个主成分"""
assert self.n_components <= X.shape[1], \
"n_components must not be greater than the feature number of X"
def demean(X):
return X - np.mean(X, axis=0)
def f(w, X):
return np.sum((X.dot(w) ** 2)) / len(X)
def df(w, X):
return X.T.dot(X.dot(w)) * 2. / len(X)
def direction(w):
return w / np.linalg.norm(w)
def first_component(X, initial_w, eta=0.01, n_iters=1e4, epsilon=1e-8):
w = direction(initial_w)
cur_iter = 0
while cur_iter < n_iters:
gradient = df(w, X)
last_w = w
w = w + eta * gradient
w = direction(w)
if (abs(f(w, X) - f(last_w, X)) < epsilon):
break
cur_iter += 1
return w
X_pca = demean(X)
self.components_ = np.empty(shape=(self.n_components, X.shape[1]))
for i in range(self.n_components):
initial_w = np.random.random(X_pca.shape[1])
w = first_component(X_pca, initial_w, eta, n_iters)
self.components_[i,:] = w
X_pca = X_pca - X_pca.dot(w).reshape(-1, 1) * w
return self
def transform(self, X):
"""将给定的X,映射到各个主成分分量中"""
assert X.shape[1] == self.components_.shape[1]
return X.dot(self.components_.T)
def inverse_transform(self, X):
"""将给定的X,反向映射回原来的特征空间"""
assert X.shape[1] == self.components_.shape[0]
return X.dot(self.components_)
def __repr__(self):
return "PCA(n_components=%d)" % self.n_components
- 数据的降维


import numpy as np
import matplotlib.pyplot as plt
X = np.empty((100, 2))
X[:,0] = np.random.uniform(0., 100., size=100)
X[:,1] = 0.75 * X[:,0] + 3. + np.random.normal(0, 10., size=100)
from playML.PCA import PCA
pca = PCA(n_components=2)
pca.fit(X)
pca.components_
pca = PCA(n_components=1)
pca.fit(X)
X_reduction = pca.transform(X)
X_reduction.shape
X_restore = pca.inverse_transform(X_reduction)
X_restore.shape
plt.scatter(X[:,0], X[:,1], color='b', alpha=0.5)
plt.scatter(X_restore[:,0], X_restore[:,1], color='r', alpha=0.5)
plt.show()
n_components代表要求的几个主成分。X_reduction表示降维后的矩阵。X_restore表示降维后又恢复的矩阵。

4 sklearn中的PCA算法
1.利用pca实现降维
from sklearn.decomposition import PCA
pca = PCA(n_components=1)
pca.fit(X)
pca.components_
X_reduction = pca.transform(X)
X_restore = pca.inverse_transform(X_reduction)
2.以具体的手写数字识别来用PCA进行降维之后,然后用KNN分类
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
digits = datasets.load_digits()
X = digits.data
y = digits.target
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(X_train)
X_train_reduction = pca.transform(X_train)
X_test_reduction = pca.transform(X_test)
knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train_reduction, y_train)
knn_clf.score(X_test_reduction, y_test)
3.取的主成分分量的个数来解释代表主要的特征(pca.explained_variance_ratio_主成分所解释的方差)即重要程度所需的主成分数
from sklearn.decomposition import PCA
pca = PCA(n_components=X_train.shape[1])
pca.fit(X_train)
plt.plot([i for i in range(X_train.shape[1])],
[np.sum(pca.explained_variance_ratio_[:i+1]) for i in range(X_train.shape[1])])
plt.show()

或使用以下:
pca = PCA(0.95)
pca.fit(X_train)
pca.n_components_
X_train_reduction = pca.transform(X_train)
X_test_reduction = pca.transform(X_test)
knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train_reduction, y_train)
knn_clf.score(X_test_reduction, y_test)
pca.n_components_为对应比例是0.95所有的主成分分量的个数
4.对数据进行降维之后的数据的可视化
%%time
pca = PCA(n_components=2)
pca.fit(X)
X_reduction = pca.transform(X)
for i in range(10):
plt.scatter(X_reduction[y==i,0], X_reduction[y==i,1], alpha=0.8)

5 PCA的其他应用
1. 利用PCA进行降噪
from sklearn import datasets
digits = datasets.load_digits()
X = digits.data
y = digits.target
noisy_digits = X + np.random.normal(0, 4, size=X.shape)
example_digits = noisy_digits[y==0,:][:10]
for num in range(1,10):
example_digits = np.vstack([example_digits, noisy_digits[y==num,:][:10]])
example_digits.shape
def plot_digits(data):
fig, axes = plt.subplots(10, 10, figsize=(10, 10),
subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))
for i, ax in enumerate(axes.flat):
ax.imshow(data[i].reshape(8, 8),
cmap='binary', interpolation='nearest',
clim=(0, 16))
plt.show()
plot_digits(example_digits)
pca = PCA(0.5).fit(noisy_digits)
pca.n_components_
components = pca.transform(example_digits)
filtered_digits = pca.inverse_transform(components)
plot_digits(filtered_digits)
components = pca.transform(example_digits)
filtered_digits = pca.inverse_transform(components)
plot_digits(filtered_digits)
利用PCA的正反变换,去除存在的噪音
2.特征脸
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people()
faces.keys()
faces.data.shape
faces.target_names
faces.images.shape
random_indexes = np.random.permutation(len(faces.data))
X = faces.data[random_indexes]
example_faces = X[:36,:]
example_faces.shape
def plot_faces(faces):
fig, axes = plt.subplots(6, 6, figsize=(10, 10),
subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))
for i, ax in enumerate(axes.flat):
ax.imshow(faces[i].reshape(62, 47), cmap='bone')
plt.show()
plot_faces(example_faces)
# 特征脸
from sklearn.decomposition import PCA
pca = PCA(svd_solver='randomized')
pca.fit(X)
pca.components_.shape
plot_faces(pca.components_[:36,:])
faces2 = fetch_lfw_people(min_faces_per_person=60)
faces2.data.shape
faces2.target_names
len(faces2.target_names)
len(faces2.target_names)
5小结
- 在使用PCA进行降维的时候,适用于对数据的特征比较多,进行降维。但注意的是不能对数据进行标准化,否则对PCA降维失效,基本原理 是按梯度上升法,使得方差最大原理,标准化则会改变方差,所以不能标准化。
- PCA还可以用于降噪,降维的过程中实际是提取主要的分量,并间接的滤除噪音,因此可以提高模型的准确率。
- pca还可用于特征脸的表示。
1万+

被折叠的 条评论
为什么被折叠?



