某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米。我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置;数轴上的每个整数点,即0,1,2,……,L,都种有一棵树。
由于马路上有一些区域要用来建地铁。这些区域用它们在数轴上的起始点和终止点表示。已知任一区域的起始点和终止点的坐标都是整数,区域之间可能有重合的部分。现在要把这些区域中的树(包括区域端点处的两棵树)移走。你的任务是计算将这些树都移走后,马路上还有多少棵树。
输入描述:
第一行有两个整数:L(1 <= L <= 10000)和 M(1 <= M <= 100),L代表马路的长度,M代表区域的数目,L和M之间用一个空格隔开。接下来的M行每行包含两个不同的整数,用一个空格隔开,表示一个区域的起始点和终止点的坐标。
输出描述:包括一行,这一行只包含一个整数,表示马路上剩余的树的数目。
输入
500 3
150 300
100 200
470 471
输出:298
备注:对于20%的数据,区域之间没有重合的部分;
对于其它的数据,区域之间有重合的情况。
< 1 > 第一种解法: 差分法 对差分数组求前缀和,得出最后留存的树的情况。
//差分前缀和 求校门外的树 数目 牛客
#include <cstdio>
#include <iostream>
using namespace std;
#define ll long long
const int maxn = 5e4+7;
int cf[maxn]; //差分数组 初始都为0
int main(){
ll L,M;
cin>>L>>M;
while(M--) {
ll l,r;
cin>>l>>r;
cf[l]++;
cf[r+1]--;
}
ll sum=0,num=cf[0]; //num 为cf数组的当前 前缀和
for(int i=1; i<=L+1; i++) {
if(num == 0) sum++; //若 num = 0 即 tree[i] = 0 树i存活
num+=cf[i];
}
cout<<sum;
return 0;
}
< 2 > 第二种解法: 对区间合并
//区间合并 求校门外的树 数目 牛客
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
const int maxn = 1e4+7;
struct node {
int l,r;
const bool operator < (const node &a) const{
return l < a.l ;
}
}qj[maxn]; //存放被砍的区间端点 且按左端点从小到大排序
int main(){
ll L,M;
cin>>L>>M;
for(int i=0; i<M; i++) {
ll l,r;
cin>>l>>r;
qj[i].l = l;
qj[i].r = r;
}
sort(qj,qj+M); //对结构体数组排序
int start = qj[0].l;
int end = qj[0].r;
ll sum =0;
for(int i=1; i<M ;i++) {
if(qj[i].l > end) { //当前区间左端点 大于 维护连续区间的最大右端点
sum += end-start+1; //累加被砍数目
start = qj[i].l; //维护
end = qj[i].r; //维护
}
else if(qj[i].r > end) end = qj[i].r;
}
sum += end-start+1; //!!!将最后一个连续区间加上
cout<< L+1-sum; //共 L+1棵树 被砍 sum 棵
return 0;
}

被折叠的 条评论
为什么被折叠?



