Convex Optimization(2)——凸优化数学基础之线性代数

Linear Algebra

1、矩阵的值域(Range)以及零空间(nullspace)

矩阵的值域,表示成 R ( A ) R(A) R(A),是所有 R m R^{m} Rm空间中的可以由矩阵 A A A列向量线性组合的向量组成的集合,即:
R ( A ) = { A x ∣ x ∈ R n } R(A)=\{Ax|x\in \R^{n}\} R(A)={AxxRn}
矩阵的值域构成了一个 R m R^{m} Rm的子空间。它的空间维度是矩阵 A A A的秩,表示成 r a n k   A rank\ A rank A
矩阵 A A A的零空间(有些地方叫解空间),表示成 N ( A ) N(A) N(A),是所有的满足 A x = 0 Ax=0 Ax=0 x x x向量的集合,即:
N ( A ) = { x ∣ A x = 0 } N(A)=\{x|Ax=0\} N(A)={xAx=0}
也因此 N ( A ) ∈ R n N(A)\in \R^{n} N(A)Rn,它的空间维度是 m − R a n k ( A ) m-Rank(A) mRank(A)

大体我是这么尝试去理解的:
在这里插入图片描述
在这里插入图片描述

矩阵A引起的正交分解
如果 V V V R n R^{n} Rn的子空间,那么它的正交补(orthogonal complement),表示成 V ⊥ = { x ∣ z T x = 0   f o r   a l l   z ∈ V } V^{\bot}=\{x|z^{T}x=0\ for\ all\ z\in V\} V={xzTx=0 for all zV}( V ⊥ ⊥ = V V^{\bot\bot}=V V=V)
关于正交,一个基本的结论是:
N ( A ) = R ( A T ) ⊥ , R ( A ) = N ( A T ) ⊥ N(A)=R(A^{T})^{\bot},R(A)=N(A^{T})^{\bot} N(A)=R(AT)R(A)=N(AT)
这个结论也可以描述成:
N ( A ) ⊕ ⊥ R ( A T ) = R n N(A)\overset{\bot}{\oplus} R(A^{T})=R^{n} N(A)R(AT)=Rn
这里的符号 ⊕ ⊥ \overset{\bot}{\oplus} 叫做正交直和,上述式子描述的是对A进行正交分解
直和 若 W 1 ⋂ W 2 = 0 , 那 么 W 1 + W 2 就 是 直 和 , 记 作 W 1 ⊕ W 2 若W_{1}\bigcap W_{2}={0},那么W_{1}+W_{2}就是直和,记作W_{1}\oplus W_{2} W1W2=0W1+W2W1W2

2、对称矩阵的特征值分解

A ∈ S n A\in S^{n} ASn,即 A A A是一个对称 n × n n\times n n×n的方阵,则 A A A可以被分解成:
A = Q Λ Q T A=Q\Lambda Q^{T} A=QΛQT
其中 Q Q Q是正交矩阵,即 Q Q T = E QQ^{T}=E QQT=E Λ \Lambda Λ是对角矩阵,其中的每一个元素都是矩阵 A A A的特征值 λ i \lambda_{i} λi,而 Q Q Q中的每一个列向量都是对应的特征值所对应的特征向量。
上述式子就是对称矩阵的特征值分解。我们一般将特征值从大到小排列在对角矩阵中,即 λ 1 ≤ λ 2 ≤ . . . ≤ λ n \lambda_{1}\le \lambda_{2}\le ...\le \lambda_{n} λ1λ2...λn,所以 λ 1 ( A ) = λ m a x ( A ) \lambda_{1}(A)=\lambda_{max}(A) λ1(A)=λmax(A)
对于特征值,还有些结论:
d e t ( A ) = ∏ i = 1 n λ i , t r ( A ) = ∑ i = 1 n λ i det(A)=\prod_{i=1}^{n}\lambda_{i},tr(A)=\sum_{i=1}^{n}\lambda_{i} det(A)=i=1nλitr(A)=i=1nλi

Definiteness and Matrix inequalities
(前提仍然是对称矩阵,及表示成 S n S^{n} Sn
最大的特征值和最小的特征值分别满足:
λ m a x = sup ⁡ x ≠ 0 ( x T A x x T x ) , λ m i n = inf ⁡ x ≠ 0 ( x T A x x T x ) \lambda_{max}=\underset{x\neq0}{\sup}(\frac{x^{T}Ax}{x^{T}x}),\lambda_{min}=\underset{x\neq0}{\inf}(\frac{x^{T}Ax}{x^{T}x}) λmax=x̸=0sup(xTxxTAx)λmin=x̸=0inf(xTxxTAx).
如果一个矩阵 A ∈ S n A\in S^{n} ASn并且满足 x T A x > 0 x^{T}Ax>0 xTAx>0,那么这个矩阵是正定的,记作 A > 0 A>0 A>0(此处应是正定比较符号,但是没敲出来,哈哈哈),当且仅当所有特征值都大于0时成立,也即 λ m i n > 0 \lambda_{min}>0 λmin>0。反之,即负定。我们用 S + + n S^{n}_{++} S++n描述在集合 S n S^{n} Sn中的正定矩阵集合。如果含等号,那就是半正定或半负定。

对称平方根
若矩阵 A ∈ S + + n A\in S^{n}_{++} AS++n,则 A = Q Λ Q T A=Q\Lambda Q^{T} A=QΛQT,由于是正定的,所以特征值均大于,因此 A = A 1 2 A 1 2 , A 1 2 = Q Λ 1 2 Q T A=A^{\frac{1}{2}}A^{\frac{1}{2}},A^{\frac{1}{2}}=Q\Lambda^{\frac{1}{2}}Q^{T} A=A21A21A21=QΛ21QT

3、广义特征值分解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4、奇异值分解

在这里插入图片描述
在这里插入图片描述

奇异矩阵的伪逆
在这里插入图片描述

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值