1.转换数据类型
df.apply(pd.to_numeric,errors='ignore')
2.宽数据转换为长数据
pd.melt(df,id_vars=['col3'])
3.重命名列名称
df.rename(columns={'col1':'列1'},inplace=True)
4.crosstab 混淆矩阵
pd.crosstab(df['truth'],df['predict'])
5.join操作
merge_df=pd.merge(df1,df2,on='col1',how='left')
6.重置索引
df.reset_index()
7.替换填充
df.replace(0,1,inplace=True)
df.fillna(1)
8.groupby去掉索引
df.groupby('col1',as_index=False).size()
9.one-hot编码
time_dummy = pd.get_dummies(raw_df['timety_2'])
static_df = pd.concat([time_dummy,raw_df],axis=1)
10.读取excel
pd.read_excel(io=r'test.xlsx',sheet_name='factor',engine='openpyxl')
pandas常用操作
最新推荐文章于 2024-12-06 18:51:08 发布
这篇博客涵盖了Pandas库在数据处理中的常见操作,包括将数据列转换为数值类型、宽数据到长数据的变形、重命名列、构建混淆矩阵、执行join操作、重置索引、替换缺失值、使用groupby进行统计、实现one-hot编码以及读取Excel文件。这些技巧对于数据预处理和分析至关重要。
737

被折叠的 条评论
为什么被折叠?



