菜地里翻滚的猪
码龄9年
关注
提问 私信
  • 博客:26,807
    26,807
    总访问量
  • 16
    原创
  • 1,986,152
    排名
  • 10
    粉丝
  • 0
    铁粉

个人简介:It界的小鲁班

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2016-02-27
博客简介:

菜地里翻滚的猪的博客

博客描述:
记录从菜鸟到大神的蜕变的日记
查看详细资料
个人成就
  • 获得16次点赞
  • 内容获得17次评论
  • 获得88次收藏
  • 代码片获得120次分享
创作历程
  • 7篇
    2019年
  • 9篇
    2018年
成就勋章
TA的专栏
  • 机器学习实战
    9篇
  • 算法实现
  • k近邻算法
    3篇
  • 决策树
    3篇
  • 软件安装
    1篇
  • 云计算
    4篇
  • SDN
    3篇
  • 大数据
    1篇
  • 可视化
    1篇
  • 百度地图
    1篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflowpytorch图像处理数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

pandas数据处理学习.zip

发布资源 2019.07.13 ·
zip

机器学习实战源码.zip

发布资源 2019.07.13 ·
zip

Linux中地址占用解决方法

在使用Linux时会发生某个端口被占用的情况1. 当你该端口被其他进程占用时,那就需要你修改为一个未使用的端口号重新运行。2. 是运行程序没有通过<Ctrl> C正常结束而是直接关闭Terminal或者其他非正常途径退出的时候: 通过lsof -i:(port),查看占用该端口号的进程,一般就是刚未正常退出的进程。例如sudo lsof -i:9050...
原创
发布博客 2019.05.29 ·
3597 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

Ryu拓扑发现原理

Ryu拓扑发现的核心模块是ryu/topology目录下的switches.py,拓扑发现的利用是同目录下的dumper.py。在dumper.py中,会利用_CONTEXTS来实例化switches.py中的Switches类,然后将拓扑发现的相干信息通过日志方式(LOG.debug)显示。启动命令以下所示:  ryu-manager --verbose --observe-links ryu...
原创
发布博客 2019.05.15 ·
1587 阅读 ·
2 点赞 ·
0 评论 ·
13 收藏

海量数据读取与可视化分析--1

实验环境搭建 数据库平台搭建 本实验运用了mysql8.0数据库,从官网下载msi安装包进行安装,安装过程中可自定义安装路径和设置登录名称及密码,本文实验的登录名称和密码分别为:root、225859.安装完成后,打开命令行并输入密码后就能进入数据库操作命令行,界面如下,说明已经安装成功。由于mysql数据库界面的不清爽友好,因此需要下载Navicat的第三方连接工具与mysq...
原创
发布博客 2019.05.08 ·
727 阅读 ·
1 点赞 ·
2 评论 ·
1 收藏

Ryu之流量监控

为了网络的安全和业务的正常运作,持续注意网络的健康状况是最基本的工作,找出网络的错误,发现真正的原因需要清楚的知道网络的状态,本文介绍如何使用OpenFlow来取得相关的统计信息。from operator import attrgetterfrom ryu.app import simple_switch_13from ryu.controller import ofp_event...
原创
发布博客 2019.04.07 ·
3435 阅读 ·
4 点赞 ·
12 评论 ·
22 收藏

在Ryu中实现交换器

在Ryu实现交换器OpenFlow交换器会接受来自于controller的指令并达到下列功能:对于接收到的封包进行修改或针对指定的端口进行转发。 对于接收到的封包进行转发到Controller的动作(Packet-In)。 对于接收到的来自Controller的封包转送到指定端口(Packet-out...
原创
发布博客 2019.04.05 ·
1239 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

Linux下pycharm的安装与破解

首先需要安装JDK,Ubuntu自带openjdk的残留,可通过java -version命令进行查看,如果不安装JDK的话,pycharm安装时就会报错:No JDK found. Please validate either IDEA_JDK, JDK_HOME or JAVA_HOME environment variable...,对于JDK的安装,网上有相当多的教程,但是大部分都不能利用...
原创
发布博客 2019.02.21 ·
11333 阅读 ·
1 点赞 ·
3 评论 ·
21 收藏

Mininent与Ryu框架的安装

Mininet是一个可以在有限资源的普通电脑上快速建立大规模SDN原型系统的网络仿真工具。该系统具有终端节点(End-Host)、OpenFlow交换机、控制器组成。这使得它可以模拟真实网络,可对各种想法或网络协议进行开发验证。Mininet作为一个轻量级软件定义网络的研发与测试平台得到广泛关注,主要特征包括以下四个方面:灵活性:可通过软件的方式简单、迅速的创建一个用户自定义的网络拓扑,缩短开...
原创
发布博客 2019.02.21 ·
693 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

机器学习实战--基于概率论的分类方法:朴素贝叶斯(三)

                     使用朴素贝叶斯分类器从个人广告获取区域倾向使用不同城市的广告训练一个分类器,目的就是使用该分类器进行分类,通过观察单词的条件概率值,来发现特定城市的相关内容。1.收集数据接下来需要使用python下载文件,Universal Feed Parser是python中最常用的RSS库。在python提示符下敲入&gt;&gt;&gt;pip ins...
原创
发布博客 2018.11.08 ·
237 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战——基于概率论的分类方法:朴素贝叶斯(二)

                                      使用贝叶斯过滤垃圾邮件1.准备数据:切分文本将字符串切分为词列表时,倘若没有split参数,则标点符号也会被当成词的一部分,可以使用正则表达式来切分句子,其中分隔符是除了单词,数字之外的任意字符串。&gt;&gt;&gt;import re&gt;&gt;&gt; regEx = re.compile('\...
原创
发布博客 2018.11.05 ·
202 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战--基于概率论的分类方法:朴素贝叶斯(一)

优点:在数据较少的情况下仍然有效,可以处理多类别问题。缺点:对于输入数据的准备方式较为敏感。1.使用条件概率来分类:两个概率p1(x,y)和p2(x,y):如果 p1(x,y)&gt;p2(x,y),则属于类别1,反之属于类别2.上述只是尽可能简化的描述,真正需要比较和计算的是p(c1|x,y)和p(c2|x,y),意义是对于给定的数据点x,y,该数据点来自类别c1和c2的概率,可...
原创
发布博客 2018.11.04 ·
241 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战--决策树(三)

测试:使用已有决策树执行分类构造决策树之后,将用于实际数据的分类。执行数据分类时需要使用决策树以及用于构造决策树的标签向量。代码如下:'''该函数的inputTree是已经生成的决策树,是字典集,featLabels是要测试的数据特征的列表,testVec是与featLabels的特征列表中对应的特征值,注意位置需要对应。输入形式如:classify(myTree,['no sur...
原创
发布博客 2018.10.16 ·
341 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战--决策树(二)

                              使用Matplotlib注解绘制树形图annotation是注解工具,注解功能可以对文字着色,并提供多种形状以供选择,还可以反转箭头。创建名为treePlotter.py的新文件。使用文本注解绘制树节点: #定义文本框和箭头格式decisionNode = dict(boxstyle="sawtooth",fc="0....
原创
发布博客 2018.10.16 ·
256 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习实战--决策树(一)

决策树是一种通过推断分解,逐步缩小待推测事物范围的算法结构,重要任务就是理解数据中所蕴含的知识信息,可以使用不熟悉的数据集合,并从中提取出一系列规则,根据数据集创建规则的过程就是机器学习的过程。优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征的数据。缺点:可能产生过度匹配的问题。### 决策树的构造使用信息论划分数据集,要知道当前数据集的哪个特征起决定性作...
原创
发布博客 2018.10.16 ·
1287 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

机器学习实战--K近邻算法的实现(三)

                                      使用K近邻算法识别手写数字这里构造的系统只能识别数字0-9,需要识别的数字已经使用图形处理软件处理成32*32大小的黑白图像,并将其转换为图像格式。实际图像存储在两个子目录中:目录trainingDigits中,大约包含2000个例子,每个数字大约有200个样本,同一个数字有多种书写形态,数字样本被命名为:数字...
原创
发布博客 2018.10.14 ·
306 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习实战--K近邻算法实现(二)

                        实例:使用K近邻算法改进约会网站从文本文件中解析数据数据样本存放在txt类型文件中,每个样本占一行,总共有1000行,每行样本都包含的特征为:每年获得的飞行常客里程数 玩视频游戏所耗时间百分比 每周消耗的冰淇淋公升数将上述特征输入到分类器之前,需要将待处理的数据格式设置为分类器可以接收的数据,为此创建file2matrx的函数,...
原创
发布博客 2018.10.10 ·
156 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战--K近邻算法实现(一)

KNN算法的工作原理为:存在一个样本数据的集合,也称作训练样本集合,并且样本集的每个数据都存在标签。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的分类标签,一般只选择样本集中前K个最相似的数据,前K个相似数据中出现次数最多的分类作为新数据的分类。创建knn.py的文件,在pycharm的命令行窗口切换到该文件所在的目录,输入Py...
原创
发布博客 2018.10.10 ·
168 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

php典型模块大全

发布资源 2018.02.12 ·
pdf

Unity3D接鸡蛋游戏源码

发布资源 2018.01.13 ·
rar
加载更多