leetcode85

本文探讨了在二维二进制矩阵中寻找只包含1的最大矩形问题,介绍了通过分解为多个柱状图来简化计算的方法,同时提供了两种实现思路:一是基于柱状图高度的动态更新与最大面积计算;二是利用前缀和方法,类似于求最大正方形问题的泛化。

刷题主页

给定一个仅包含 0 和 1 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。
示例:
输入:
[
[“1”,“0”,“1”,“0”,“0”],
[“1”,“0”,“1”,“1”,“1”],
[“1”,“1”,“1”,“1”,“1”],
[“1”,“0”,“0”,“1”,“0”]
]
输出: 6

通常对于数组求最大或最小值等问题,最简单的方法是暴力遍历,但是这通常会超时,如果做过leetcode84的话,这道题应该会很好解决,这就是矩形说白了就是多个柱状图的组合,因此,我们可以把它分解成多个柱状图来做,对每一层计算出高度,带入求矩形的公式中即可。

class Solution {
public:
    int maximalRectangle(vector<vector<char>>& matrix) {
        int m=matrix.size();
        if(m==0)return 0;
        int n=matrix[0].size();
        vector<int>heights(n,0);
        int res=0;
        for(int i=0;i<m;++i){
            for(int j=0;j<n;++j){
                if(matrix[i][j]=='1'){
                    heights[j]++;
                }
                else{
                    heights[j]=0;
                }
            }
            res=max(res,largestRectangleArea(heights));
        }
        return res;
    }
    int largestRectangleArea(vector<int>& heights) {
        heights.insert(heights.begin(),0);
        heights.push_back(0);
        int len=heights.size();
        stack<int>st;
        int res=0;
        for(int i=0;i<len;++i){
            while(!st.empty() && heights[st.top()]>heights[i]){
                int cur=st.top();
                st.pop();
                int left=st.top()+1;
                int right=i-1;
                res=max(res,heights[cur]*(right-left+1));
            }
            st.push(i);
        }
        heights.pop_back();
        heights.erase(heights.begin());
        return res;
    }
};

除此之外可以使用前缀和计算,其原理和leetcode221.最大正方形相同,只是更加泛化。

int maximalRectangle(vector<vector<char>>& matrix){
        int m=matrix.size();
        if(m==0)return 0;
        int n=matrix[0].size();
        vector<vector<int>>sum(m+1,vector<int>(n+1,0));
        for(int i=1;i<=m;++i){
            for(int j=1;j<=n;++j){
                sum[i][j]=matrix[i-1][j-1]-'0';
            }
        }
        for(int i=1;i<=m;++i){
            for(int j=1;j<=n;++j){
                sum[i][j]+=sum[i][j-1];
            }
        }
        for(int i=1;i<=m;++i){
            for(int j=1;j<=n;++j){
                sum[i][j]+=sum[i-1][j];
            }
        }
        int res=0;
        for(int i=1;i<=m;++i){
            for(int j=1;j<=n;++j){
                for(int len1=1;len1+i-1<=m;++len1){
                    for(int len2=1;len2+j-1<=n;++len2){
                        if(getArea(sum,i,j,len1,len2)==len1*len2)res=max(res,len1*len2);
                        else break;
                    }
                }
            }
        }
        return res;

    }
    int getArea(vector<vector<int>>& sum,int x0,int y0,int len1,int len2){
        int x1=x0+len1-1,y1=y0+len2-1;
        return sum[x1][y1]-sum[x1][y0-1]-sum[x0-1][y1]+sum[x0-1][y0-1];
    }
LeetCode85 题的题目名称是: ## **Maximal Rectangle**(最大矩形) --- ### 🔹题目描述: 给定一个只包含 `0` 和 `1` 的二维二进制矩阵 `matrix`,找出只包含 `1` 的最大矩形,并返回其面积。 --- ### 🔹示例: ```text 输入: [ ["1","0","1","0","0"], ["1","0","1","1","1"], ["1","1","1","1","1"], ["1","0","0","1","0"] ] 输出: 6 ``` 解释: 最大矩形是由第二行和第三行中的 `1` 构成的,大小为 `2 x 3 = 6`。 --- ### 🔹解法思路: 这道题是 **LeetCode 84(Largest Rectangle in Histogram)** 的二维扩展。 我们可以将每一行看作是直方图的底部,并逐行构建“高度数组”,然后对每一行使用 LeetCode 84 的单调栈解法来计算当前行所能构成的最大矩形面积。 --- ### 🔹C++ 实现代码: ```cpp #include <iostream> #include <vector> #include <stack> using namespace std; // LeetCode 84 的函数:直方图中最大矩形面积 int largestRectangleArea(vector<int>& heights) { stack<int> s; int maxArea = 0; heights.push_back(0); // 添加一个0,确保最后所有元素都被弹出 for (int i = 0; i < heights.size(); ++i) { while (!s.empty() && heights[i] < heights[s.top()]) { int height = heights[s.top()]; s.pop(); int width = s.empty() ? i : i - s.top() - 1; maxArea = max(maxArea, height * width); } s.push(i); } heights.pop_back(); // 恢复原数组 return maxArea; } // LeetCode 85 主函数 int maximalRectangle(vector<vector<char>>& matrix) { if (matrix.empty() || matrix[0].empty()) return 0; int rows = matrix.size(); int cols = matrix[0].size(); vector<int> heights(cols, 0); // 每列的高度 int maxArea = 0; for (int row = 0; row < rows; ++row) { // 更新高度数组 for (int col = 0; col < cols; ++col) { if (matrix[row][col] == '1') { heights[col] += 1; } else { heights[col] = 0; } } // 使用 LeetCode 84 的方法计算当前行的最大面积 maxArea = max(maxArea, largestRectangleArea(heights)); } return maxArea; } // 主函数测试 int main() { vector<vector<char>> matrix = { {'1','0','1','0','0'}, {'1','0','1','1','1'}, {'1','1','1','1','1'}, {'1','0','0','1','0'} }; cout << "最大矩形面积是: " << maximalRectangle(matrix) << endl; return 0; } ``` --- ### 🔹代码解释: - `largestRectangleArea`:使用单调栈实现 LeetCode 84 的解法。 - `maximalRectangle`: - 遍历每一行,维护一个 `heights` 数组,表示当前行以上每列的“高度”。 - 每一行都调用一次 `largestRectangleArea` 来计算最大矩形面积。 - 时间复杂度:`O(rows * cols)`,因为每一行构建高度数组是 `O(cols)`,而单调栈也是 `O(cols)`。 --- ### 🔹总结: | 项目 | 内容 | |------|------| | 难度 | 困难 | | 算法 | 单调栈 + 动态规划 | | 时间复杂度 | O(rows × cols) | | 空间复杂度 | O(cols) | | 相关题号 | LeetCode 84, 221(最大正方形) | --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值