POJ2480 Longge's problem 欧拉函数应用

21 篇文章 0 订阅
12 篇文章 0 订阅

题目链接:POJ2480

题目大意:∑gcd(i, N) 1<=i <=N.,Given an integer N(1 < N < 2^31),

代码,思路借鉴:大佬的思路

在数论中的积性函数:对于正整数n的一个函数 f(n),当中f(1)=1且当a,b互质,f(ab)=f(a)f(b),在数论上就称它为积性函数。若某函数f(n)符合f(1)=1,且就算a,b不互质,f(ab)=f(a)f(b),则称它为完全积性函数。

欧拉函数,gcd(n,k)(当k固定时)都是积性函数

且当i,j互素时,gcd(i*j,m)=gcd(i,m)*gcd(j,m),所以gcd(n,k)是积性函数

同时,积性函数的和也是积性函数

下文来源:http://lydws.blog.163.com/blog/static/22621105120152265175340/

大概只有我这种人不会做。。。
看了lyd大神(和我的名字好像。。。)的题解,有些懂了:大神链接
主要考察一个叫积性函数的东西:f(x*y)=f(x)*f(y),中学数学经常见到。
积性函数还有个性质就是积性函数的和也是积性函数。
可以得到一个式子f(n)=f(p1^a1)*f(p2^a2)*f(p3^a3)*...*f(pk^ak)。不过目前我们不知道这个式子有什么用,6666666666666666。
再看本题,如果n和m互质,那么gcd(i,n*m)=gcd(i,n)*gcd(i,m)。∴gcd(i,n)是积性函数==>Σgcd(i,n)是积性函数。
设f(n)=Σgcd(i,n),问题转换为求出所有f(pi^ai)。
下面来求f(pi^ai):
首先明确,如果p是n的约数,那么满足gcd(i,n)==p的i的个数是Φ(n/p)。
证明:gcd(i,n)==p。设i=k*p,n=m*p。
则gcd(k,m)=1,也就是k和m互质,要求出满足条件的i的个数,就是求出i所对应的k的个数,即求m的欧拉函数,m=n/p,所以满足条件的i的个数就是Φ(m)=Φ(n/p)。
好了,用这种原则来求f(pi^ai),就是枚举pi^ai的每个约数(其实就是pi^t,t<=ai),然后求使gcd(i,pi^ai)==pi^t满足的i的个数,所以 个数*pi^t就是要求的答案的一部分。
公式:f(pi^ai)=Φ(pi^ai)+pi*Φ(pi^(ai-1))+pi^2*Φ(pi^(ai-2))+...+pi^(ai-1)* Φ(pi)+pi^ai*Φ(1);
这里可以把求欧拉函数的部分化简,因为f(pi^ai)中只有一个约数pi,所以:
Φ(pi^ai)=pi^ai-pi^(ai-1)。
证明:小于pi^ai的正整数个数为p^ai - 1个;
其中,和pi^ai不互质的正整数有(pi*1,pi*2,...,pi*(pi^(ai-1)-1) )共计 pi^(ai-1)-1个。
Φ(pi^ai)=pi^ai -1 -(pi^(ai-1)-1)=pi^ai-pi^(ai-1)
然后整理得:f(pi^ai)=pi^ai*(1+ai*(1-1/pi))。
所以,f(n)=n*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*.…… =n* π(ai*pi+pi-ai)/pi;
以上这个公式建议大家手推一下,本人一开始没怎么搞懂,后来耐下心来推了一下公式就明白多了。
代码对原博主的代码做了一些修改,速度快了一倍。
总体来说应该比较好懂,打了一个素数表,对n进行分解成质因子的乘积形式,然后根据公式推就出来了。
AC代码
/*
POJ2480
2017年8月7日15:33:36 
手敲 
打了1e5范围内的素数表
速度快了一倍
AC 
*/ 
#include<stdio.h>
#include<math.h>
#include<string.h>
typedef long long ll;
const ll maxn=1e5+10;
ll flag[maxn];//标记 
ll prime[maxn] ;//存储素数 
ll cnt;//计数 
void isprime(){
	memset(flag,0,sizeof(flag));
	cnt=0;
	flag[1]=1;
	for(ll i=2;i<maxn;i++){
		/*如果当前i没有访问过,那么将其放进素数表*/ 
		if(!flag[i]){
			prime[cnt++]=i;
			/*从 i*i-maxn 范围内,所有该素数的倍数全部打上标记 */ 
			for(ll j=i*i;j<maxn;j+=i) flag[j]=1;
		} 
	}
} 

void solve(ll n){
	ll ans=n;
	for(ll i=0;prime[i]<=sqrt(n);i++){
		if(n%prime[i]==0){
			ll j=0;
			while(n%prime[i]==0) n/=prime[i],j++;
			ans/=prime[i];//考虑到j可能除不尽这个数,造成精度误差,所以对公式进行了变形。
			ans*=prime[i]+prime[i]*j-j; 
		}
	}
	if(n>1){
		ans/=n;
		ans*=n+n-1;
	}
	printf("%I64d\n",ans);
}


int main(){
	ll n;
	isprime();
	while(~scanf("%I64d",&n)){
		solve(n);
	}
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值