Model Quantization
Model Quantization的一个比较经典的流程:对PyTorch训练好的model,先转onnx,再转成比如TensorRT(即quantization部分)。ONNX可以看成一个model的中转站,可以转换各种形式的model。(Quantization根据平台不同而不同,没有硬件的话自己做没有意义)
ONNX是一种针对机器学习所设计的开放式的文件格式,用于存储训练好的模型。它使得不同的人工智能框架(如Pytorch, MXNet)可以采用相同格式存储模型数据并交互。 ONNX的规范及代码主要由微软,亚马逊 ,Facebook 和 IBM 等公司共同开发,以开放源代码的方式托管在Github上。目前官方支持加载ONNX模型并进行推理的深度学习框架有: Caffe2, PyTorch, MXNet,ML.NET,TensorRT 和 Microsoft CNTK,并且 TensorFlow 也非官方的支持ONNX。—维基百科
那么首先写一个把PyTorch转换成ONNX的文件。
查了一下,要做转换的话好像这个model本身要走一遍,因此把train.py中初始化model以及之前用到的库都得包括进来,另外因为用了百度的平台,使用永久外部库的安装方式,所以最末还加了一行。
import torch
import torchvision.models as models
from utils.datasets import *
from utils.parse_config import *
from test import evaluate
from utils.utils import *
from models import *
import os
import sys
import time
import datetime
import argparse
sys.path.append('../../../aistudio/external-libraries')
这边还是和train.py中差不多一样的初始化model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, default

本文介绍了将PyTorch模型通过ONNX转换为TensorRT的过程,以实现模型量化和推理加速。首先,详细阐述了Model Quantization的一般流程,接着讨论了ONNX作为模型转换中介的作用和其支持的框架。接着展示了如何使用torch.onnx.export()将PyTorch模型导出为ONNX格式。最后,提到将ONNX模型转换为TensorRT时遇到的问题和解决思路,尽管因平台权限未能完成转换,但指出了后续步骤和可能需要的手动调整。
最低0.47元/天 解锁文章
1005

被折叠的 条评论
为什么被折叠?



