蓝桥杯历届题目及解析汇总(附思路及代码)【点击此进入】
蓝桥杯,ACM算法学习【文档】【视频】大放送【点击此进入】
第六题
标题:特别数的和(时间限制: 1.0s 内存限制: 256.0MB 本题总分:15 分)###
【问题描述】
小明对数位中含有 2、0、1、9 的数字很感兴趣(不包括前导 0) ,在 1 到
40 中这样的数包括 1、2、9、10 至 32、39 和 40,共 28 个,他们的和是 574。
请问,在 1 到 n 中,所有这样的数的和是多少?
【输入格式】
输入一行包含两个整数 n。
【输出格式】
输出一行,包含一个整数,表示满足条件的数的和。
【样例输入】
40
【样例输出】
574
【评测用例规模与约定】
对于 20% 的评测用例,1 ≤ n ≤ 10。
对于 50% 的评测用例,1 ≤ n ≤ 100。
对于 80% 的评测用例,1 ≤ n ≤ 1000。
对于所有评测用例,1 ≤ n ≤ 10000。
解题思路:
这题主要是找出在一定范围内数位中出现 2、0、1、9 这四个数字之一的所有数字,感觉这个有规律,懒得找了,直接暴力,最大范围为 10000, O(n) 复杂度应该能过
代码:
#include <iostream>
using namespace std;
// 判断某个数字位中是否包含 2, 0, 1, 9 这四个数字
bool judge(int n) {
int t;
while (n) {
if (((t = n % 10) == 2) || t == 0 || t == 1 || t == 9) {
return true;
}
n /= 10;
}
return false;
}
int main() {
int n, res = 0;
cin >> n;
for (int i = 1; i <= n; i++) {
if (judge(i)) {
res += i;
}
}
cout << res << endl;
return 0;
}