K - Oh My Holy FFF HDU - 4719(线段树 + dp)

最大分组分数问题的动态规划与线段树解法
这篇博客介绍了如何解决一个关于队列分组优化的问题,其中要求每组的最后一个人身高高于前一组的最后一个人。作者提出了一种动态规划和线段树结合的算法思路,通过结构体排序和线段树维护区间最大值实现状态转移的优化,从而在大范围的数据下达到高效的解决方案。代码部分展示了具体的实现细节,包括数据结构和主要函数的定义。

题意

  1. 有 n 个人从左到右的排队,对应的身高的为 Hi, 先在你可以将这个队伍分成若干个连续 group, 且每个 group 中的人数不能超过 L,要求从第二组开始每组的最后一个人的高度比前一组的最后一个人的高度高,第 i 组最后一个人的高度为 bi,那么分组总分数和为:在这里插入图片描述
    求一个合理的分组方案,让分组分数最大。

思路

  1. 这题我们假设 dp [i] 表示前 i 个人分组的最大得分,我们对每个 i 位置多考虑 dp [i] , 当我们一直考虑到 dp [n] 的时候就得到的答案了,
  2. 当 n 的数据范围较小的时候,我们考虑 dp [i] 可以从 i 位置前面的 L 个人进行 for 循环暴力转移。
  3. 这题 n 的范围是 1e5 不能进行暴力转移,因为每次转移只能从比 i 这个人低的进行转移,我们考虑对对身高进行结构体排序,用线段树按身高从小到大维护每个位置的 dp 值,这样身高大的就不会影响当前正在维护的 dp 值,在用 线段树维护区间最大值就可以 log (n) 进行状态转移了。

代码

#include <bits/stdc++.h>
using namespace std;
#define db  double
#define ll  long long
#define sc  scanf
#define pr  printf
#define fi  first
#define se  second
#define pb  push_back
#define m_p make_pair
#define Pir pair<ll, ll>
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
/*==========ACMer===========*/
#define int ll
#define ls(rot) (rot << 1) 
#define rs(rot) (rot << 1 | 1) 
const int N = 1e5 + 10;
int n, m;
ll dp[N];
struct Data
{
    ll val, pos;
    bool operator < (const Data x) const
    {
        if (val == x.val)
            return pos > x.pos;
        return val < x.val;
    }
} d[N];
struct Tree
{
    ll val; int l, r;
} t[N << 2];
void push_up(int k)
{
    t[k].val = max(t[ls(k)].val, t[rs(k)].val);
}

void build(int k, int l, int r)
{
    t[k].l = l, t[k].r = r;
    if (l == r)
    {
        t[k].val = -INF;
        return;
    }
    int md = (l + r) >> 1;
    build(ls(k), l, md);
    build(rs(k), md + 1, r);
    push_up(k);
}

void update(int k, int x, ll y)
{
    if (t[k].l > x || t[k].r < x) return;
    if (t[k].l >= x && t[k].r <= x)
    {
        t[k].val = y;
        return;
    }
    update(ls(k), x, y);
    update(rs(k), x, y);
    push_up(k);
}

ll query(int k, int l, int r)
{
    if (t[k].l > r || t[k].r < l) return -INF;
    if (t[k].l >= l && t[k].r <= r)
    {
        return t[k].val;
    }
    return max(query(ls(k), l, r), query(rs(k), l, r));
}

signed main()
{
    int T, cas = 1; sc("%lld", &T);
    while (T --)
    {
        sc("%lld %lld", &n, &m);
        for (int i = 1; i <= n; i ++)
        {
            int x; sc("%lld", &x);
            d[i] = (Data){ x, i };
        }

        sort(d + 1, d + 1 + n);
        build(1, 1, n);

        for (int i = 1; i <= n; i ++)
        {
            dp[d[i].pos] = -INF;
            if (d[i].pos <= m)
            {
                dp[d[i].pos] = d[i].val * d[i].val;
            }

            ll x = query(1, max(1LL, d[i].pos - m), d[i].pos - 1);
            if (x != -INF) 
                dp[d[i].pos] = max(dp[d[i].pos], x + d[i].val * d[i].val);
            if (dp[d[i].pos] != -INF)
                update(1, d[i].pos, dp[d[i].pos] - d[i].val);
        }

        pr("Case #%lld: ", cas ++);
        if (dp[n] != -INF)
            pr("%lld\n", dp[n]);
        else
            pr("No solution\n");
    }

    /* return 0; */
}
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值