02 ,向量空间 :序偶,运算,群,向量,n 维向量,列向量,行向量,向量空间,n 维空间

1 ,序偶 :

  1. 定义 :有序二元组 : (x,y)
  2. 解释 : 按照一定规则,计算 x,y
    x:序偶的第一元素
    y:序偶的第二元素

2 ,集合上的运算 :

  1. 定义 :集合中的的一个序偶 (x,y) 的结果为集合中的第三个元素,成为集合中的运算
  2. 集合 :S = {1,2,3,4,5}
  3. 例如 : 2 + 3 = 5
  4. 注意 : 2,3,5 都属于 S 集合

3 ,群 : 集合 + 运算

  1. 定义 :
    群 G = ( 集合 G ) + ( G 上的一个运算 )
  2. 群需要满足三个条件 :
0 ,* 代表一种运算,注意,不代表乘法,他现在暂时代表任意运算
1 ,结合性 : 对于任意的 x,y,z ∈ G ,满足 x*(y*z) = (x*y)*z
2 ,中性元的存在性 : 有一个 e∈G,满足 e*x = x*e = x
3 ,逆元存在 : a*b=b*a=e

4 ,向量,n 维向量 :

  1. 定义 :指具有大小和方向的量
  2. n 维向量 : n 个有次序的数称为 n 维向量

5 ,列向量,行向量 : 一样的

  1. 本质 : 行向量与列向量没有本质的区别只是表现形式不同
  2. 标识 :列向量
    在这里插入图片描述
  3. 标识 :行向量
    在这里插入图片描述
  4. 是否一样 : 一样

6 ,向量空间 : 定义

  1. n 维向量 : aT = {a1,a2,a3…an}
  2. V 为 n 维向量的集合 : 一堆的 n 维向量
    V = {aT1,aT2,aT3 … aTn}
  3. 两种运算封闭 :且向量 V 对于向量的加法和数乘两种运算封闭
  4. 那么 : 就称集合 V 为向量空间
  5. 注意 :
    加法封闭 :

    数乘封闭 :

7 ,向量空间 : 表示

  1. 向量空间 :
    (V,+,R)

8 ,n 维实数空间 :

(Rn,+,R)

9 ,三维空间 :

  1. (R3,+,R)
  2. 手写是这样的 :
  3. 他的运算是这样的 :

10 ,向量空间 : 个人理解

  1. 他是加法空间
  2. 无限大的空间
  3. 可以按照乘法,无限扩展
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值