为什么四川人喜欢日李先人
码龄9年
关注
提问 私信
  • 博客:19,035
    19,035
    总访问量
  • 15
    原创
  • 2,230,837
    排名
  • 12
    粉丝
  • 0
    铁粉

个人简介:爱运动、爱摄影、喜欢历史、喜欢代码,准备读博的蓝孩子

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2016-03-17
博客简介:

qq_34325086的博客

查看详细资料
个人成就
  • 获得10次点赞
  • 内容获得12次评论
  • 获得97次收藏
创作历程
  • 5篇
    2020年
  • 7篇
    2019年
  • 4篇
    2018年
成就勋章
TA的专栏
  • pytorch
    2篇
  • 深度学习
    11篇
  • 医学图像
    2篇
  • keras学习
  • 自然语言处理
    6篇
  • 强化学习
    1篇
  • 神经网络语言模型
    1篇
  • python_leetcode
    2篇
  • C#
    2篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络自然语言处理tensorflownlp
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

pytorch中使用tensorboard

简介:Tensorboard是tensorflow内置的一个可视化工具,它通过将tensorflow程序输出的日志文件的信息可视化使得tensorflow程序的理解、调试和优化更加简单高效。 Tensorboard的可视化依赖于tensorflow程序运行输出的日志文件,因而tensorboard和tensorflow程序在不同的进程中运行。 TensorBoard给我们提供了极其方便而强大的可视化环境。它可以帮助我们理解整个神经网络的学习过程、数据的分布、性能瓶颈等等。安装:pip inst
原创
发布博客 2020.06.19 ·
400 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

《深入理解并实现Att U-Net》

Introduction 《Attention U-Net: Learning Where to Look for the Pancreas》发表于2018CVPR,相对于定位+分割的级联方式实现的精准语义分割,通过添加attention gate的方式隐式的学习对于胰腺分割重要的特征,省略不重要的特征。Network Architecture 网络结构类似于U-net,区别是U-net在解码器和编码器同层级只进行拼接操作,此处则加入了attention gate,用于将...
原创
发布博客 2020.06.19 ·
2882 阅读 ·
3 点赞 ·
0 评论 ·
17 收藏

ValueError: Unknown layer: SampleLayer 常见问题1:模型中包含自定义的layer,加载模型时出错 

问题描述:在实现自编码器的过程中,加入了自定义的采样层,训练完成之后,加载模型失败解决方法:load_model方法提供了custom_objects的参数,该参数接受一个dict型的输入,key值为model.summary()中显示的layer的名字,value的值为自定义的layer类的类名from model import SampleLayerencoder = load_model(encoderpath, custom_objects={'SampleLayer':.
原创
发布博客 2020.05.15 ·
1930 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

疗效预测中的影像组学特征提取

介绍最近一直在做关于肿瘤的放疗疗效预测相关的工作,遇到了一些问题主要是关于影像组学特征提取相关的问题,在这里做一个总结,主要是关于基于python提取影像组学特征:需要的module:主要需要的是SimpleITK,NRRD和pyradiomics这几个包,安装的话直接pip就可以pip install pyradiomicspip install SimpleITKpip ...
原创
发布博客 2020.04.21 ·
2883 阅读 ·
3 点赞 ·
3 评论 ·
48 收藏

ICCV2019 递归级联网络实现医学图像配准

什么是图像配准:医学图像配准是医学图像处理任务中的关键步骤,具有重要的临床意义。医学图像配准即分别给定一张运动的和固定的 3D 医学图像,希望将运动图像(moving image)配准到固定图像(fixed image),如图1所示。图像可能来自相同或不同个体的三维脑 MRI 的二维切片。通过预测非线性变形场,我们可以将运动图像变形为变形图像(warped image)。在理想情况下,变形图像...
翻译
发布博客 2020.02.24 ·
1638 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

《Video Action Transformer Network》

这周阅读了《Video Action Transformer Network》这篇文章,发表于2019年度的CVPR,并且做了oral talk,作者是卡内基梅隆和Google的研究人员,代码开源在:http://rohitgirdhar.github.io/ActionTransformer。模型的目标是针对视频中的某一帧进行动作的检测和分类(此帧中包含多个人物和不同的动作,类似于目标检测)...
原创
发布博客 2019.11.19 ·
3369 阅读 ·
3 点赞 ·
6 评论 ·
14 收藏

《Categorizing and Inferring the Relationship between the Text and Image of Twitter Posts》

文章介绍 这周读的是《Categorizing and Inferring the Relationship between the Text and Image of Twitter Posts》这篇文章,发表于ACL2019会议上,并且做了oral talk。文章主要做的工作如下:使用推特提供的api从推特获取了大约5000条包含图文信息的数据;并收集了他们的人口统计学数据...
原创
发布博客 2019.10.10 ·
628 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

《Using Human Attention to Extract Keyphrase from Microblog Post》

这周读的是《Using Human Attention to Extract Keyphrase from Microblog Post》,发表在ACL2019上,作者是南京理工大学的zhang yingyi和zhang chengzhi,并且做了oral talk。作者的主要思路是在基于双向LSTM的基础上将人类的注意力机制加入到微博或者推特的关键词提取上来,取得了非常好的效果。相关情况介绍...
原创
发布博客 2019.10.08 ·
691 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

《Searching for Effective Neural Extractive Summarization: What Works and What’s Next》

文章介绍 这周读的是《Searching for Effective Neural Extractive Summarization: What Works and What’s Next》,发表于2019ACL,并且做了oral talk。作者是复旦大学计算机学院的研究人员。文章主要探究的是不同的网络结构、迁移知识、学习策略会怎样有益于神经抽取式摘要系统。 当前的研究...
原创
发布博客 2019.09.30 ·
327 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

《Pointer Networks》

这周读的是《Pointer Networks》这篇文章。作者是Google brain和UC Berkeley的研究人员,作者在本文中通过对编码器-解码器机制和注意力机制进行改进,提出了新的网络结构pointer network,并将其运用到解决组合最优化问题。下图为seq2seq模型与指针网络的对比:可以看出传统的seq2seq模型最终产生的是一个序列,且序列中包含的元素个数与输入序列中...
原创
发布博客 2019.09.29 ·
661 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

《A DEEP REINFORCED MODEL FOR ABSTRACTIVE SUMMARIZATION》

九月份第三周论文笔记这周读的是《A DEEP REINFORCED MODEL FOR ABSTRACTIVE SUMMARIZATION》这篇文章,作者主要有两个创新点:提出了改进的注意力机制intra-attention;将强化学习的方法加入到了模型的训练过程中,提高抽取式摘要的可读性模型还是基于经典的encoder-decoder架构:绿色向量C是将encoder每一步的隐层输出做注...
原创
发布博客 2019.09.27 ·
1125 阅读 ·
0 点赞 ·
3 评论 ·
1 收藏

从word2vec到bert

从word2vec到bert这周读的是《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》这篇文章,发表于2018年,作者是Google AI language的研究人员,作者针对语言模型的学习提出了基于深度双向transformer的模型结合MLM、NSP等方法进行词向量的预训练,...
原创
发布博客 2019.09.18 ·
959 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

区块链综述.pptx

发布资源 2019.08.09 ·
pptx

中文版多核处理器编程的艺术

发布资源 2018.09.19 ·
xz

使用C#进行WORD操作(二)

上篇写到了如何新建并保存一个word文档,现在写一下如何对文档插入一些内容,我们将这写操作保存到了一个类里class WordHandle { private object path;//文件路径 private MSWord.Application wordApp;//Word应用程序变量 private MSWord.Document w...
原创
发布博客 2018.05.24 ·
291 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

使用C#进行word操作(一)

最近在项目中用到了使用C#进行word操作的知识,在这里对常用的语法进行一下总结:1. 使用COM方式进行操作,首先要添加对应的引用,在这里使用的是VS2017和office2016的版本,在项目一栏下拉菜单中找到添加引用,在COM这一栏找到 Microsoft Office 16.0 Object Library和Microsoft Word 16.0 Object Library点击添加,会在...
原创
发布博客 2018.05.23 ·
669 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

leetcode-107 二叉树的层次遍历

给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)思路:容易想到对树的层次遍历是通过队列完成的,不过发现python的queue模块并没有提供循环队列,只提供了简单的队列,好处是不会限制队列的大小,难点在于怎么分层次的把节点值存到内层队列中,方法是:先用size获取队列的大小即为该层次上的节点个数,然后一次访问队列的前size个节点,每次访...
原创
发布博客 2018.05.04 ·
185 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

leetcode-112 路径总和

给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。说明: 叶子节点是指没有子节点的节点。思路:只想到了使用递归的方法,递归查找左右子树是否存在和 sum - root.val 的一条路径,结束条件是节点为叶节点且其值为sum,还需要注意树为空的情况(这里应该用到了分治法的思想),下面是python实现:# Definition for a b...
原创
发布博客 2018.05.02 ·
395 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多