.猪饲料.
码龄9年
关注
提问 私信
  • 博客:17,666
    17,666
    总访问量
  • 20
    原创
  • 260,975
    排名
  • 115
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2016-03-18
博客简介:

qq_34343690的博客

查看详细资料
  • 原力等级
    当前等级
    3
    当前总分
    261
    当月
    11
个人成就
  • 获得136次点赞
  • 内容获得20次评论
  • 获得206次收藏
  • 代码片获得1,418次分享
创作历程
  • 17篇
    2024年
  • 2篇
    2022年
  • 1篇
    2021年
成就勋章
TA的专栏
  • 部分平面几何算法的C++实现
    17篇
兴趣领域 设置
  • 编程语言
    c++
  • 数学
    线性代数矩阵
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

多边形布尔运算(2)

本文给出多边形布尔运算的实现,采用的算法在一文介绍。首先定义MarkedPoint结构体作为辅助数据结构,其定义如下:其中original表示多边形原始的点,即非交点;value是点的几何数。
原创
发布博客 2024.04.30 ·
250 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏

多边形布尔运算(1)

两平面向量交点的几何数的绝对值取1,这两个向量在该交点处各有一个几何数,其正负号由向量的旋向决定——记这两个平面向量分别为P1和P2,若从P2旋转到P1为逆时针,则P1在该交点处的几何数为-1,则P2在该交点处的几何数为+1;其中O(n1×n2)是关键的复杂度,算法的主要开销在计算交点,交点计算的复杂度决定了整个算法的复杂度,算法的优化也取决于交点计算,尽量避免不必要的交点计算操作是很重要的。一般地,当其中一个多边形的环中无几何数不为0的点时,即一个多边形的环中无交点时,便是计算得到了所有的环。
原创
发布博客 2024.04.30 ·
1881 阅读 ·
43 点赞 ·
1 评论 ·
36 收藏

多边形耳切算法

将多边形转为三角形集合的算法。
原创
发布博客 2024.04.29 ·
339 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

相交判断算法

提供参数inside决定一个AABB矩形包含在另一个AABB矩形中时是否算相交。提供inside参数决定多边形包含在圆内部或圆包含在多边形内部是否算相交。提供inside参数决定一个多边形包含在另一个多边形内部是否算相交。多边形完全在AABB矩形内或AABB矩形完全在多边形内也算相交。提供inside参数决定多段线完全在多边形内部时是否算相交。提供inside参数决定一个圆包含在另一个圆中是否算相交。圆完全在AABB矩形内或AABB矩形完全在圆内也算相交。多段线完全在AABB矩形内也算相交。
原创
发布博客 2024.04.29 ·
350 阅读 ·
12 点赞 ·
0 评论 ·
3 收藏

线段部分重合与完全重合判断算法

判断两线段是否有重合:仅有一个端点重合不算两线段重合,完全重合也算重合。
原创
发布博客 2024.04.29 ·
321 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

平行、矩形、左侧判断算法

平行、矩形、左侧判断算法。
原创
发布博客 2024.04.29 ·
117 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

判断在几何对象内算法

判断一个三角形是否完全在另一个三角形内部:与三角形相交或有顶点在三角形上均不算在三角形内部。判断有限长线段是否完全在三角形内:线段与三角形相交或有端点在三角形上均不算在三角形内部。判断点是否在多边形内:coincide决定是否包含点在多边形上的情况。判断点是否在三角形内:coincide决定是否包含点在三角形上的情况。判断点是否在AABB矩形内:coincide决定是否包含点在AABB矩形上的情况。判断点是否在圆内:coincide决定是否包含点在圆上的情况。
原创
发布博客 2024.04.29 ·
161 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

距离算法

点到直线距离:如果为有限长线段且垂足不在线段上,则计算点到线段端点距离。点到多段线距离:计算点到每一段有限长线段的距离,取最近距离。点到多边形距离:计算点到每一段有限长线段的距离,取最近距离。
原创
发布博客 2024.04.29 ·
206 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

基本几何对象(9)——Bezier

定义Bezier类,这是为了能绘制曲线才定义的类。Bezier对象中有一个Polyline对象来表示贝塞尔曲线的形状,而Bezier本身的点则表示控制点。为了降低性能开销,仅在构造Bezier和修改Bezier控制点时重新计算贝塞尔曲线的形状,变换Bezier时,分别对Bezier本身的点和其中的Polyline的点做变换,而不重新计算形状。下面给出Bezier的声明。下面给出Bezier的实现。
原创
发布博客 2024.04.29 ·
172 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

基本几何对象(7)——Circle

定义Circle类,用圆心和半径表示圆。下面给出Circle的声明。下面给出Circle的实现。
原创
发布博客 2024.04.29 ·
135 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

基本几何对象(8)——Line

定义Line类,表示有限长的线段或无限长的直线,但这个类很少用,因为通常都是直接用两点表示Line了。下面给出Line的声明。下面给出Line的实现。
原创
发布博客 2024.04.29 ·
129 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

基本几何对象(6)——Triangle

定义Triangle类,用于多边形的三角耳切。下面给出Triangle的声明。下面给出Triangle的实现。
原创
发布博客 2024.04.29 ·
119 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

基本几何对象(5)——Polygon

定义Polygon类,作为多边形,这是一个常用的几何对象。Polygon是有相同首尾点的Polyline,因此我选择在Polyline的尾部添加一个和头部点相同的点作为尾部点,而非像某些实现那样在获取第尾部点时返回头部点。下面给出Polygon的声明。下面给出Polygon的实现。
原创
发布博客 2024.04.29 ·
527 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

基本几何对象(4)——Polyline

定义Polyline类,作为多段线,这回是一个常用的几何对象。下面给出Polyline的声明。下面给出Polyline的实现。
原创
发布博客 2024.04.29 ·
263 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

基本几何对象(3)——AABBRect

定义AABBRect类,通常用于表示其他几何对象的AABB外接矩形,用于相交的快速判断。下面给出AABBRect的声明。下面给出AABBRect的实现。
原创
发布博客 2024.04.29 ·
106 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

基本几何对象(2)——Point

定义Point类,即点,同时也可以作为平面向量使用。Point的加减乘除是作为向量的加减乘除。下面给出Point的声明。下面给出Point的实现。
原创
发布博客 2024.04.29 ·
137 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

基本几何对象(1)——Geometry

定义基础的Geometry类,作为所有几何类的基类,方便用Geometry指针进行统一操作:长度、空判别、清空、克隆、变换、旋转、平移、缩放、凸包、外接AABB矩形、最小外界矩形。Geometry定义了type()虚函数,返回一个枚举值,表示Geometry指针所指向对象的实际类型,下面给出枚举值的定义。另外,在计算时还依赖如圆周率这样的常数,下面列出所有用到的常数。下面给出Geometry的声明。下面给出Geometry的实现。
原创
发布博客 2024.04.29 ·
261 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Mask图像与json文件相互转换

做机器学习处理图像时,需要标注图像,其中一种标注是标出图像中的某些区域,生成Mask图像或记录下这些区域的轮廓点坐标。通常,标注直接生成其中一种文件,即只生成json文件或只生成Mask图像。故在此贴出Mask图像与json文件相互转换的Python代码。如果输入文件夹,则会将文件夹下所有json文件或mask图片转成对应文件输出到指定路径中。python json_to_mask.py 文件夹或json文件 输出文件夹。python mask_to_json.py 文件夹或mask图片 输出文件夹。
原创
发布博客 2022.12.22 ·
5880 阅读 ·
7 点赞 ·
16 评论 ·
64 收藏

查找exe依赖dll库的Python脚本

打包exe时需要将依赖的dll库一起打包,这些dll库数量多,所以我写了Python脚本将指定exe的依赖dll库输出到指定文件夹中。
原创
发布博客 2022.10.19 ·
484 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

OpenCL-SDK-2022.5.18-win32

发布资源 2022.10.03 ·
7z
加载更多