每天三杯咖啡
码龄9年
关注
提问 私信
  • 博客:101,434
    社区:456
    101,890
    总访问量
  • 71
    原创
  • 23,982
    排名
  • 356
    粉丝
  • 学习成就

个人简介:图难于其易,为大于其细,天下难事,莫做于于易,天下大事,莫做于细

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2016-03-21
博客简介:

qq_34376868的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    328
    当月
    3
个人成就
  • 获得234次点赞
  • 内容获得13次评论
  • 获得329次收藏
创作历程
  • 20篇
    2024年
  • 1篇
    2023年
  • 4篇
    2022年
  • 8篇
    2021年
  • 35篇
    2020年
  • 3篇
    2019年
  • 14篇
    2018年
成就勋章
TA的专栏
  • 人工智能
    2篇
  • 温故而知新
    14篇
  • java
    26篇
  • mysql
    5篇
  • 删除重复数据
    2篇
  • 设计模式
    11篇
  • springboot
    3篇
  • spring
    2篇
  • maven
    5篇
  • tomcat
    2篇
  • idea
    2篇
  • idea使用技巧
    2篇
  • AJAX
  • linux
    11篇
  • 网络
    5篇
  • 虚拟机联网
    2篇
  • 黑历史
    1篇
  • 无意间的发现
    9篇
  • 格式转化问题
    3篇
  • 思维导图练习
    4篇
  • Linux基础
    6篇
  • python
    3篇
兴趣领域 设置
  • 网络空间安全
    web安全
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

数据仓库分层设计概念

数据仓库分层设计的主要目的包括支持数据的重用、优化性能、提高数据的一致性、可维护性和可拓展性,以及提高数据的可理解性和处理的灵活性.操作数据层(Operational Data Store, ODS):存储经清洗和初步转换后的数据,接近实时更新,支持简单查询和操作,为数据分析和报表提供最新的、经过清洗的操作数据.分析和展示层(Analytics and Presentation Layer):为用户提供数据分析、报告和可视化的界面,将处理后的数据以易于理解的形式展现给业务用户和决策者.
原创
发布博客 2024.10.17 ·
485 阅读 ·
5 点赞 ·
0 评论 ·
2 收藏

维度建模定义一览

维度建模是一种专门面向数据分析和决策支持的数据结构设计方法。这种方法。
原创
发布博客 2024.10.17 ·
702 阅读 ·
23 点赞 ·
0 评论 ·
7 收藏

数据仓库基础概念

数据仓库和维度建模是现代企业数据分析不可或缺的部分。数据仓库通过整合、清洗和转换来自不同源系统的数据,为企业提供一致、可靠的历史数据,支持战略决策和未来趋势预测。维度建模作为一种反范式化的建模方法,通过设计合理的事实表和维度表,大大提高了数据查询和分析的效率,使数据仓库更能贴近业务需求,易于理解和使用。
原创
发布博客 2024.10.17 ·
1334 阅读 ·
16 点赞 ·
0 评论 ·
13 收藏

数据库设计中的范式

数据库设计中的范式和ER实体关系模型是确保数据库高效、可靠的重要工具。范式通过逐步规范化减少数据冗余和异常,ER模型则直观地展示了实体间的关系,有助于概念设计和沟通。结合两者的优势,可以在实际应用中实现高性能、高可靠性的数据库系统。
原创
发布博客 2024.10.17 ·
826 阅读 ·
14 点赞 ·
0 评论 ·
11 收藏

雪花算法的基本原理与使用场景

雪花算法(Snowflake Algorithm)是一种由Twitter开发的分布式ID生成算法,旨在解决分布式系统中生成唯一ID的需求。它通过将一个64位的整数划分为不同的部分,确保生成的ID在分布式环境中是唯一的,并且具有一定的时间有序性。
原创
发布博客 2024.10.15 ·
382 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

索引设计的原则主要包括以下几点:

8.扩展索引:尽量扩展已有索引,而不是新建索引。例如,如果表中已经存在a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可,这样可以节省空间并提高效率。7.区分度低的列:如果列不能有效区分数据(如性别,男女未知,最多也就三种),则不适合做索列,因为这样的索引对查询优化的帮助不大。9.避免不必要的索引:对于查询中很少涉及的列或重复值比较多的列,不要建立索引,因为这样的索引对查询性能的提升有限。6.更新频繁字段:对于更新频繁的字段,不适合创建索引,因为每次更新都会导致索引的修改,从而降低性能。
原创
发布博客 2024.10.15 ·
220 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

讲一讲Redis五大数据类型的底层实现

在实际应用中,Redis会根据数据的实际情况,动态地为数据对象选择最合适的底层数据结构实现,以达到节约内存、提高性能的目的。:用于存储所有键值对的键和值的字符串长度都小于64字节,且哈希对象保存的键值对的数量小于512个的情况。:用于存储所有元素都是整数值,且集合对象保存的元素数量小于等于512个的情况。:用于存储所有字符串元素的长度都小于64字节,且列表保存的元素少于512个的情况。:用于存储长度小于等于32字节的字符串值,使用简单动态字符串(SDS)结构,内存分配只需要一次,分配一块连续的空间即可。
原创
发布博客 2024.10.15 ·
979 阅读 ·
22 点赞 ·
0 评论 ·
15 收藏

分布式锁实现细节:使用Redisson进行并发控制

在顺风车系统中,尤其是在高峰期,多个并发请求可能同时尝试修改匹配状态,例如,同一乘车需求可能被多个匹配过程尝试分配,这将导致数据不一致。通过使用Redisson提供的分布式锁功能,顺风车系统能够在高并发场景下有效控制资源的并发访问,保证数据的一致性和完整性,提高系统的稳定性和可靠性。:锁的超时时间应根据业务场景调整,确保在正常情况下锁能够被释放,避免死锁。:确保在锁的使用过程中,无论是否发生异常,锁都能被正确释放,避免资源泄露。:在多线程环境中,确保锁的使用是线程安全的。在顺风车匹配的业务代码中,使用。
原创
发布博客 2024.10.14 ·
463 阅读 ·
5 点赞 ·
0 评论 ·
2 收藏

预计算热点路径在顺风车系统中的实际应用

将每条路径的信息存储为哈希表的形式,其中键为唯一标识符(如组合了起点与终点的字符串),值为路径详细信息(如路程长度、所需时间)。综上所述,预计算热点路径的应用极大地提升了顺风车系统在固定办公区场景下的效率与用户体验,是现代出行平台不可或缺的功能之一。:根据用户的历史偏好(如愿意绕远换取更低的费用)、当前的交通状况(如避开拥堵路段),系统可提供个性化的路径建议。:基于过去的搭乘记录,系统甚至可以提前预测高峰期的乘车需求,主动向经常出行的用户提供优惠券或提醒,增强用户体验。
原创
发布博客 2024.10.14 ·
362 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

预计算热点路径技术细节

对于热点路径来说,可以将每一条可能的路径标识符(比如:起点、终点的经纬度字符串拼接)作为键,将路径的相关信息(如预计耗时、距离等)作为值。利用地图API(如Google Maps API或百度地图API)或开放的地图数据(如OpenStreetMap)配合路由算法(如Dijkstra算法或A*算法)计算从各个潜在上车点到办公区的所有可行路径。通过上述资料的学习与实践,可以深入理解如何使用GIS、Hash表与Redis实现预计算热点路径的存储与查询,进而优化顺风车系统的性能。
原创
发布博客 2024.10.14 ·
532 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

顺风车系统优化方案:针对固定办公区域的高效匹配

通过上述技术方案的综合应用,不仅能极大提升顺风车系统的匹配效率与用户体验,还能进一步挖掘数据价值,为企业决策提供更多洞见。
原创
发布博客 2024.10.14 ·
360 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

企业级应用最快速学习路线:Agent智能体项目

通过以上学习路线,您将能够快速掌握Agent智能体项目开发所需的核心技能,并具备参与企业级Agent项目实战的能力,从而能够快速入职并胜任相关工作。:在第二阶段,您将深入学习Agent智能体项目的基础知识,包括Agent的基本概念、架构设计、开发框架等。:在第七阶段,您将通过实战演练项目,提升自己的实战能力,为入职Agent智能体项目做准备。:在第五阶段,您将通过综合实践项目,将之前学到的知识融会贯通,提升自己的项目实战能力。:在第三阶段,您将通过实战项目,将理论知识应用到实际开发中,提升自己的实战能力。
原创
发布博客 2024.10.14 ·
529 阅读 ·
24 点赞 ·
0 评论 ·
14 收藏

跨国交易中涉及的日期和时间处理的主要流程

在处理跨国交易,尤其是中美之间的交易时,时区处理是关键。
原创
发布博客 2024.10.13 ·
180 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

限界上下文(Bounded Context)

限界上下文(Bounded Context)是领域驱动设计(DDD,Domain-Driven Design)中的一个核心概念,由Eric Evans在其著作《领域驱动设计》中首次提出。限界上下文定义了一个明确边界内的术语、逻辑和模型,有助于管理系统的复杂性,并保证不同团队间的一致性和沟通有效性。
原创
发布博客 2024.10.13 ·
446 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

一力破万法,高并发系统优化通解思路

以上策略及其实现细节,从集群扩展、异步处理、缓存机制、消息队列引入到数据库优化,覆盖了高并发系统从架构设计到代码实现的关键技术点。实践时,应根据具体业务场景和系统架构,合理选择和组合上述策略,以达到最佳的性能优化效果。
原创
发布博客 2024.10.12 ·
478 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

YOLO 二元分类器

TP(真阳性):模型正确预测为正类且实际为正类的样本数量。FP(假阳性):模型错误预测为正类但实际为负类的样本数量。TN(真阴性):模型正确预测为负类且实际为负类的样本数量。FN(假阴性):模型错误预测为负类但实际为正类的样本数量。
原创
发布博客 2024.10.05 ·
530 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

卷积神经网络(Convolutional Neural Networks, CNN)

卷积神经网络(Convolutional Neural Networks, CNN)是深度学习领域中用于处理具有网格结构的输入(如图像和视频)的神经网络模型。
原创
发布博客 2024.10.02 ·
1566 阅读 ·
11 点赞 ·
0 评论 ·
18 收藏

最简单的深度学习代码demo

bs = 64bs代表批量大小(batch size),是每次迭代中模型将同时处理的数据量。在训练深度学习模型时,数据集通常被划分为多个小批量(batches),模型在每个小批量上进行前向和反向传播,然后更新权重。选择合适的批量大小对于训练效率和模型性能都很重要。该模型被设计用来处理像MNIST这样的手写数字分类问题。class MnistModel(nn.Module): # 使用更具描述性的类名super(MnistModel, self).__init__() # 调用父类构造方法。
原创
发布博客 2024.10.01 ·
911 阅读 ·
17 点赞 ·
0 评论 ·
21 收藏

为啥数据需转换成tensor才能参与后续建模训练

Tensor提供了自动求导的功能,这意味着你可以构建复杂的神经网络模型而不必手动编写梯度计算代码,简化了模型的实现过程。相比于传统的Python列表或者NumPy数组,Tensor被专门设计用来加速数学运算,特别是在利用GPU进行并行计算时,能够显著提高矩阵运算的速度,这是深度学习模型训练所必需的。综上所述,将数据转换为Tensor不仅提升了计算效率和资源利用率,还简化了模型实施流程,使开发者能够专注于模型的设计而非底层的数学细节。
原创
发布博客 2024.10.01 ·
270 阅读 ·
9 点赞 ·
0 评论 ·
1 收藏

高度细化的SAGA模式实现:基于Spring Boot与RabbitMQ的跨服务事务

场景:电商系统中的订单创建流程,涉及订单服务(Order Service)、库存服务(Inventory Service)、支付服务(Payment Service)。通过上述设计,SAGA模式与RabbitMQ的结合,不仅能够处理跨服务的事务,还能够通过消息队列实现服务解耦和消息的异步处理,提高系统的稳定性和可扩展性。为确保事务的一致性,可以使用RabbitMQ的发布确认(Publisher Confirms)机制。在每个微服务中,需要添加消息队列的监听器,以便在接收到消息时执行相应的操作。
原创
发布博客 2024.09.28 ·
628 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏
加载更多