欧几里得数据和非欧几里得数据

本文探讨了欧几里得数据(如图像、文本)和平移不变性,以及非欧几里得数据(如知识图谱、社交网络)的特点,强调了它们在数据表示和机器学习中的区别,特别是卷积神经网络对不同数据类型的处理策略。
摘要由CSDN通过智能技术生成

欧几里德数据:数据特点是排列整齐。对于某个节点,很容易可以找出其邻居节点,就在旁边,不偏不倚。最常见到的是图片(image)和视频(video)以及语音(voice)。

非欧几里德数据:排列不整齐,比较的随意。具体体现在:对于数据中的某个点,难以定义出其邻居节点出来,或者是不同节点的邻居节点的数量是不同的。

 总结:在机器学习和数据分析中,"欧式数据"通常指的是在欧式空间中用向量表示的数据,而"非欧数据"指的是在非欧式空间中表示的数据,比如图数据、文本数据等。这些术语用于强调数据样本的表示和处理可能涉及的不同几何结构和度量方法。请注意,这些术语的具体含义可能因上下文而异。

Euclidean Data(eg.image)特点:点空间有序,邻接点唯一确定

Non-Euclidean Data(eg.graph)特点:点空间无序,邻接点数不定

下面内容参考自:数据域(欧几里得数据与非欧几里得数据) - 知乎 (zhihu.com)

随着网络时代的发展,生活中产生的数据量越来越多,但数据大体分为两类欧几里得数据、非欧几里得数据。如下图为两类常见的数据:

图1 数据类型

上图所示数据主要分为两类:欧几里得数据与非欧几里得数据。

欧几里得数据

它是一类具有很好的平移不变性的数据。对于这类数据以其中一个像素为节点,其邻居节点的数量相同。所以可以很好的定义一个全局共享的卷积核来提取图像中相同的结构。常见这类数据有图像、文本、语言。

1. 图像中的平移不变性:即不管图像中的目标被移动到图片的哪个位置,得到的结果(标签)应该相同的。
2. 卷积被定义为不同位置的特征检测器。

图像:图像是一种2D的网格类型数据,通常用矩阵进行存储。

文本:文本是一种1D的网格类型数据,通常可以用向量进行存储。对于文本,我们通常做法是去停用词、以及高频词(DIFT),最后嵌入到一个一维的向量空间。

非欧几里得数据
它是一类不具有平移不变性的数据。这类数据以其中的一个为节点,其邻居节点的数量可能不同。常见这类数据有知识图谱、社交网络、化学分子结构等等。

这类数据由于其不具备平移不变性,不能利用卷积核去提取相同的结构信息,所以卷积神经网络对于这类数据无能为力。所以衍生出了处理这类数据的网络,即图神经网络。

参考:

欧式数据和非欧式数据(待完善)-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>