
图像目标检测的基本框架算法
同时也只提取整个图片一次特征,建立特征图的映射关系,直接在特征图上找到对应提取的感兴趣区域,不像之前每个感兴趣区域单独提取一次特征。把spp里面的最后的池化只保留最多的池化,roi池化,加快速度,全连接的时候,采用了svd分解方法,加快计算,同时一起训练box的回归,这样这里引入两个loss,后边分类就没用svm了。二阶段:第一阶段获得候选区域了,得到一个候选区域的特征图,然后第二阶段利用这个候选区域内的特征图特征分为两个head,一个全连接预测类别,一个预测偏移量。一阶段和二阶段区别;



