K-均值聚类算法是一种常用的无监督学习算法,用于将数据集划分为 K 个不同的簇。其工作原理是通过迭代交替更新簇的中心和样本的归属簇,直到达到收敛条件为止。
具体的步骤如下:
- 选择 K 个初始中心,可以是随机选择或根据预先设定的方法选择。
- 对于每个样本,计算其与每个中心的距离,并将其归属到离它最近的中心所在的簇。
- 更新每个簇的中心为其中所有样本的平均值。
- 重复步骤 2 和 3,直到簇的中心不再变化或达到最大迭代次数。
K-均值聚类算法的优点如下:
- 算法简单、易于实现。
- 可以有效地处理大型数据集。
- 对于高维数据和数值型数据效果较好。
K-均值聚类算法的缺点如下:
- 必须提前设定簇的个数 K,这对于某些数据集来说是一个挑战。
- 对于非球形或不等大小的簇效果较差。
- 对于噪声和离群点比较敏感。
因此,在使用 K-均值聚类算法时需要注意选择合适的 K 值,并对数据进行预处理以去除噪声和离群点。

被折叠的 条评论
为什么被折叠?



