数学公式

说明

本文公式来源于同济大学高等数学第七版,个人摘录其中部分而得,便于日后参考。

正文

向量

1.数量积

a⃗ b⃗ =|a||b|cosθ

意义

  • 可根据结果判断两个向量的同向性,大于0表示方向趋同,等于0表示方向垂直,小于0表示方向趋反;

2.向量积

c⃗ =a⃗ ×b⃗ =iaxbxjaybykazbz=(aybzazby)i+(azbxaxbz)j+(axbyaybx)k

模长: |c|=|a||b|sinθ
意义

  • c⃗  为两个向量组成的平面的法向量,方向根据右手法则确定;
  • Unity中,根据与观察方向同轴的 c⃗  的分量值正负,可判断 b⃗  a⃗  的相对方向,设定观察方向为坐标轴的正向(即站在原点向正无穷远处观察),结果为正,则 b⃗  a⃗  的逆时针方向,结果为负,则 b⃗  a⃗  的顺时针方向,结果为0,则两者平行;举例:物体a坐标为(1,1,1),物体b坐标为(1,-1,1),两者向量积为(2,0,-2),如果从x轴方向观察,根据向量积的x分量2可断定物体b在物体a的逆时针方向,如果从z轴方向观察,根据向量积的z分量-2可断定物体b在物体a的顺时针方向,如果从y轴方向观察,根据向量积的y量0断定物体b与物体a在一条线上。

3.混合积

[a⃗ b⃗ c⃗ ]=(a⃗ ×b⃗ )c⃗ 

意义:

  • 结果的绝对值表示以向量a,b,c为棱的平行六面体的体积;

曲面与曲线

1.平面的一般方程

Ax+By+Cz+D=0

2.平面的截距式方程
xa+yb+zc=1

其中,a , b , c分别为平面在x , y , z轴上的截距。
3.两平面的夹角
cosθ=|A1A2+B1B2+C1C2|A21+B21+C21A22+B22+C22

4.空间直线的点向式方程,已知直线上一点 (x0,y0,z0) ,和直线的方向向量s( m,n,p ),则有
xx0m=yy0n=zz0p

5.两直线的夹角
cosφ=|m1m2+n1n2+p1p2|m21+n21+p21m22+n22+p22

6.直线与平面的夹角
sinφ=|Am+Bn+Cp|A2+B2+C2m2+n2+p2

7.椭圆锥面
x2a2+y2b2=z2

8.椭球面
x2a2+y2b2+z2c2=1

9.单叶双曲面
x2a2+y2b2z2c2=1

10.双叶双曲面

x2a2y2b2z2c2=1

11.椭圆抛物面

x2a2+y2b2=z

12.双曲抛物面
x2a2y2b2=z

13.椭圆柱面
x2a2+y2b2=1

14.双曲柱面
x2a2y2b2=1

15.抛物柱面
x2=ay


导数

1.常用函数导数

(C)=0

(xμ)=μxμ1

(sinx)=cosx

(cosx)=sinx

(tanx)=sec2x

(secx)=secxtanx

(cotx)=csc2x

(cscx)=cscxcotx

(arcsinx)=11x2

(arccosx)=11x2

(arctanx)=11+x2

(arccot x)=11+x2

(ax)=axlna

(logax)=1xlna

2.函数的和差积商的求导法则
[u(x)±v(x)]=u(x)±v(x)

[u(x)v(x)]=u(x)v(x)+u(x)v(x)

[u(x)v(x)]=u(x)v(x)u(x)v(x)v2(x)(v(x)0)

[f(g(x))]=f(u)g(x) (u=g(x))

[f1(x)]=1f(y)

3.近似公式
f(x)f(0)+f(0)x|x|

(1+x)α1+αx

sinxx x

tanxx x

ex1+x

ln(1+x)x

4.微分中值定理

  • 费马引理:设函数 f(x) 在点 x0 的某邻域 U(x0) 内有定义,并在 x0 处可导,如果对于任意的 xU(x0) ,有
    f(x)f(x0) f(x)f(x0)
    那么 f(x0)=0
  • 罗尔定理:如果函数 f(x) 满足
    (1)在闭区间[a , b]上连续;
    (2)在开区前(a , b)上可导;
    (3)在区间端点处的值相等,即 f(a)=f(b)
    那么在(a , b)上至少有一点  ξ(a<ξ<b) ,使  f(ξ)=0
  • 拉格朗日中值定理:如果函数 f(x) 满足
    (1)在闭区间[a , b]上连续;
    (2)在开区前(a , b)上可导;
    那么在(a , b)上至少有一点  ξ(a<ξ<b) ,使  f(a)f(b)=f(ξ)(ba)

  • 柯西中值定理:如果函数 f(x) F(x) 满足
    (1)在闭区间[a , b]上连续;
    (2)在开区前(a , b)上可导;
    (3)对任意的 x(a,b) F(x)0
    那么在(a , b)上至少有一点  ξ(a<ξ<b) ,使  f(b)f(a)F(b)F(a)=f(ξ)F(ξ)

5.洛必达法则(用于求未定式 00 的极限)
定理1:设
(1)当 a0 时,函数 f(x) F(x) 都趋于零;
(2)在点 a 的某去心邻域内,f(x) F(x) 都存在,且 F(x)0
(3) limxaf(x)F(x) 存在或为无穷大;
则,

limxaf(x)F(x)=limxaf(x)F(x)

定理2:设
(1)当 a 时,函数 f(x) F(x) 都趋于零;
(2)当 |x|>N f(x) F(x) 都存在,且 F(x)0
(3) limxaf(x)F(x) 存在或为无穷大;
则,
limxaf(x)F(x)=limxaf(x)F(x)

6.判断曲线的凹凸性
f(x) [a,b] 上连续,且在 (a,b) 上具有一阶和二阶导数,如果 f′′(x)>0 ,则 f(x) [a,b] 上是凹的,如果 f′′(x)<0 ,则 f(x) [a,b] 上是凸的。
7.利用导数绘制函数图形

  1. 确定函数 y=f(x) 的定义域及特性(奇偶性、周期性等),并求出一阶导数 f(x) 和二阶导数 f′′(x)
  2. 求出函数 f(x) 的间断点, f(x) f′′(x) 在定义域内的所有零点和其值不存在的点,用这些点将定义域划分为几个区间;
  3. 确定各区间内 f(x) f′′(x) 的符号,并由此确定图形的升降、凹凸和拐点;
  4. 确定图形的水平、垂直渐近线和其他变化趋势;
  5. 计算 f(x) f′′(x) 在定义域内的所有零点和其值不存在的点对应的函数值,结合以上结果,绘制图形。

8.曲线相关
(1).对于曲线 y=f(x) ,其在点 M 处的曲率 K=dαds=1r=|y′′|(1+y2)32,其中 ds 为点 M M的微分弧段, dα 为对应的微分弧度, r 为微分弧段所在的圆(曲率圆)半径。
(2).曲率圆的圆心叫曲率中心,曲线C的曲率中心的轨迹曲线 G 叫曲线C的渐屈线,曲线 C 叫曲线G的渐伸线,曲线 G 的参数方程为:

αβ==xy(1+y2)y′′y+1+y2y′′

9.不定积分
(1)常用积分公式

kdx=kx+C

xμ=xμ+1μ+1+C (μ1)

dxx=lnx+C

dx1+x2=arctanx+C

dx1x2=arcsinx+C

cosxdx=sinx+C

sinxdx=cosx+C

sec2xdx=tanx+C

csc2xdx=cotx+C

secxtanxdx=secx+C

cscxcotxdx=cscx+C

tanxdx=ln|cosx|+C

cotxdx=ln|sinx|+C

secxdx=ln|secx+tanx|+C

cscxdx=ln|cscxcotx|+C

exdx=ex+C

axdx=axlna+C

shxdx=shx+C

chxdx=chx+C

dxa2+x2=1aarctanxa+C

dxx2a2=12aln|xax+a|+C

dxa2x2=arcsinxa+C

dxx2+a2=ln(x+x2+a2)+C

dxx2a2=ln|x+x2a2|+C

10.定积分基本公式
baf(x)dx=[F(x)]ba=F(b)F(a) F(x)f(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值