利用LLM大模型生成sql的深入应用探究

Chat2DB作为一款结合AI技术的数据库客户端,能将自然语言转为SQL并提供建议,但存在Java实现局限和复杂SQL处理问题。作者设想通过程序化方法结合LambdaIndex和LLM改善SQL生成。文章讨论如何利用AI工具提升程序员生产力,减少重复劳动。
摘要由CSDN通过智能技术生成

        Chat2DB 是一款有开源免费的多数据库客户端工具,和传统的数据库客户端软件Navicat、DBeaver 相比 Chat2DB 集成了 AIGC 的能力,能够将自然语言转换为 SQL,也可以将 SQL 转换为自然语言,可以给出研发人员 SQL 的优化建议,极大地提升人员的效率,是 AI 时代数据库研发人员的利器。未来即使不懂SQL的运营业务也可以使用快速查询业务数据、生成报表能力。

         该工具参照Navicat、DBever、DataGrip 这些个功能加上了一个AI的能力,其中 自然语言转化成sql  本质上还是拿着我们指定表,去获取对应的建表语句再去问gpt api

 缺点: 

        java开发的没有用到LLM 应用框架,不能深入LIamdaIndex  langchain 等先进的框架的融合 不利于后期的功能拓展  和后期先进功能的开发

   自然语言生成sql:对于复杂的sql 的生成 难以处理  对于中文的提问 回答准确度不高

启发:

        我们自己能不能做一个小工具来实践这个 帮我们写sql的能力:

        初步想法,通过程序先读取DDL 建表语句到文档中,(维护好表结构的关系到指定的document中) 在使用LiamdaIndex 来调用llm 生成我们要的sql 通过emeding 匹配好对应需要使用的表,不需要再在prompt 额外强调要使用哪些表,同时 弥补了 chat2db 的分析的一些短板;(目前ddl 读取到word 文档中已经做好了小工具)

        AI时代,谁能最大化的通过AI来给自己提升效率,谁就走在了其他人的前面,对于程序员也不例外。

        如何通过擅用工具,完成繁琐重复的SQL取数、CRUD的业务代码,从而解放自己的生产力,去做更有价值的事情,是摆在每个人面对待解决的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值