OpenCV图像处理-区域分割-形态学操作应用

      分割的结果中通常包含不想要的干扰,如我们感兴趣的物体被干扰了,如由于反射对分割结果造成的干扰,这时,形态学操作提供了特别有用的方法,让我们调整和描述物体的形状。
      本文聚焦形态学操作的若干典型应用,不会对形态学操作的基本数学理论进行系统的阐述,也不会对OpenCV函数进行详细的介绍,因此需要您首先对形态学的基本理论有所了解。
【1】利用膨胀操作提取物体的边界
从一个彩色红苹果图像,经过色彩分割,得到如下二值化的图片
这里写图片描述
                  (图a)
然后对图(a)进行膨胀
这里写图片描述
                  (b)
(b)-(a)就得到图像的轮廓(c)
这里写图片描述
                  (c)

完整代码如下:

#include <opencv2\opencv.hpp>
#include<opencv2\imgproc\imgproc.hpp>

using namespace cv;
using namespace std;

void main(){

    //图片保存参数
    vector<int> compression_params;
    compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
    compression_params.push_back(9);

    cv::Mat src = cv::imread("D:/test_pic/apple1.jpg",1);   

    Mat binary=Mat::zeros(src.size(),CV_8UC1);      

    //色彩分割得到二值图像
    for(int ii=0;ii<src.rows;ii++)
                   for(int jj=0;jj<src.cols;jj++){
                       int b=(int)(src.at<Vec3b>(ii,jj)[0]); 
                       int r=(int) (src.at<Vec3b>(ii,jj)[2]);                      
                       if(r>150&b<100) {
                               binary.at<uchar>(ii,jj)=255;                           
                            }
                       else binary.at<uchar>(ii,jj)=0;
                   }   

    cv::imshow("binary",binary);
    cv::imwrite("binary.jpg",binary,compression_params);

    //对二值图像进行膨胀操作
    Mat element=cv::getStructuringElement(MORPH_ELLIPSE,Size(5,5));
    Mat dilate;
    cv::dilate(binary,dilate,element);
    imshow("dilate",dilate);
    cv::imwrite("dilate.jpg",dilate,compression_params);

    //膨胀之后的图像减去膨胀前的二值图像就是物体的轮廓
    Mat edge=dilate-binary;
    imshow("edge",edge);
    cv::imwrite("edge.jpg",edge,compression_params);

    cv::waitKey(0);
}   

【2】利用腐蚀操作,分离相互连通的物体

这里写图片描述
                  (a)原始彩色图像

这里写图片描述
                  (b)经过色彩分割,二值化操作后图像

可以看到许多橘子是相互连通在一起的,这样在分割每个橘子时候,用findcounter就无法分出单个的橘子。

这里写图片描述
(c):对图(b)进行腐蚀操作,可以看到连在一起的橘子已经分开了

这里写图片描述
                  对(c)利用【1】中膨胀的方法轮廓(d)

在(d)上用findConters和minEnclosingCircle,查找轮廓,拟合圆,效果如下:
这里写图片描述
                  (e)基本上把前面的橘子都找出来了

#include <opencv2\opencv.hpp>
#include<opencv2\imgproc\imgproc.hpp>

using namespace cv;
using namespace std;


void main(){    

    cv::Mat src = cv::imread("D:/test_pic/orange8.jpg",1);      
    cv::imshow("src",src);

    //--------------------------------------图像颜色分割得到二值图像------------------------------------------
    Mat binary=Mat::zeros(src.size(),CV_8UC1);  
    for(int ii=0;ii<src.rows;ii++)
                   for(int jj=0;jj<src.cols;jj++){
                       int b=(int)(src.at<Vec3b>(ii,jj)[0]); 
                       int r=(int) (src.at<Vec3b>(ii,jj)[2]);                      
                       if(r>150&b<200) {
                               binary.at<uchar>(ii,jj)=255;                           
                            }
                       else binary.at<uchar>(ii,jj)=0;
                   } 
    cv::imshow("binary",binary);
    cv::imwrite("binary.jpg",binary);

    //-------------------------对图像进行腐蚀,使得各个橘子不再连通--------------------------------------
    Mat element=cv::getStructuringElement(MORPH_RECT,Size(15,15));
    Mat erodeImg;
    cv::erode(binary,erodeImg,element);
    imshow("erod",erodeImg);    
    cv::imwrite("erod.jpg",erodeImg);

    //--------------------------对腐蚀后的图像膨胀,以便获得轮廓(和【1】中轮廓提取一样)--------------
    Mat element2=cv::getStructuringElement(MORPH_ELLIPSE,Size(3,3));    
    Mat Img2;
    cv::dilate(erodeImg,Img2,element2);

    Mat edge=Img2-erodeImg;

    imshow("edge",edge);
    cv::imwrite("edge.jpg",edge);


    //-------------------------------------------查找轮廓并拟合圆--------------------------------------------
    //定义轮廓和层次结构
    vector<vector<Point>> contours;
    vector<Vec4i> hierarchy;
    //查找轮廓
    int model=CV_RETR_CCOMP;//针对不同的情况,几种方法应该都试一下,效果还是不一样的
    int method=CV_CHAIN_APPROX_NONE;
    cv::findContours(edge,contours,hierarchy,model,method);
    //遍历轮廓,绘拟合圆 
    for(int index=0;index>=0;index=hierarchy[index][0]){        
        float radius;cv::Point2f center;
        cv::minEnclosingCircle(contours[index],center,radius);  
        RotatedRect rect=cv::minAreaRect(contours[index]);
        double ratio=double(rect.size.height)/double (rect.size.width+0.01);
        if(radius>5&&ratio>0.5&&ratio<5.0){ //对橘子的半径,长短轴比进行一定的限定        
            //drawContours(src,contours,index,Scalar(255,255,0),CV_FILLED,8,hierarchy);         
            cv::circle(src,center,radius+6.0,Scalar(255,0,0),1,8);  //radius+6.0将之前腐蚀时减小量补回来        
        }
    }   
    cv::imshow("src with fitting-circles",src); 
    cv::imwrite("fitting-circles.jpg",src);

    cv::waitKey(0);
}

对上面程序参数稍加修改,就可以对草莓进行定位:

这里写图片描述
(a)草莓色彩分割二值化图像,有许多干扰,不处理的话会影响轮廓的提取
这里写图片描述
(b)腐蚀后,干扰明显降低了很多
这里写图片描述
(c)提取边界
这里写图片描述
(d)草莓定位圆

【3】闭运算消除孔洞

  1. 腐蚀和膨胀,看上去好像是一对互逆的操作,实际上,这两种操作不具有互逆的关系。 开运算和闭运算正是依据腐蚀和膨胀的不可逆性,演变而来的。
  2. 先腐蚀后膨胀的过程就称为开运算。开操作可以平滑物体轮廓,断开狭窄的间断和消除细小的突出物。
  3. 闭运算是先膨胀后腐蚀的过程,其功能是用来填充物体内细小空洞、 闭操作可以消弭狭窄的间断,消除小的孔洞。 同时不明显改变不明显改变其面积。

    还是以诱人的水果为例,比如说如下的两个橙子,
    这里写图片描述
    (a)两个诱人的橙子,恩,是随意拍的照片,没有使用研究过的机器视觉光照系统,所以橙子中间有强反射光(发白)

    简单的进行颜色分割(提取橙色),二值化,如下图
    这里写图片描述
    (b)橙子中间有孔洞,反射强光造成的

    这里写图片描述
    (c)闭运算后的橙子,恩,效果好多了,有利于后面的分割

关键代码如下:

    //闭运算
    Mat closedImg;
    Mat element=cv::getStructuringElement(MORPH_CROSS,Size(15,15)); 
    cv::morphologyEx(binary,closedImg,CV_MOP_CLOSE,element);
    imshow("closeImg",closedImg);
    cv::imwrite("closeImg.jpg",closedImg);

【4】开运算,检查零件的小突出物(缺陷)
先腐蚀后膨胀的过程就称为开运算。开操作可以平滑物体轮廓,断开狭窄的间断和消除细小的突出物。
这里写图片描述
(a)圆形带细小突出物的零件,假设圆的半径是R,突出物外接圆半径为r

这里写图片描述
(b)使用半径c,(c远大于r,但是略小于R)的圆,进行腐蚀操作的结果

这里写图片描述
(c)使用同样半径c的圆进行膨胀操作结果(b,c两步合在一块就是开操作)

这里写图片描述
图(c)-图(a)的结果,就检测出来了零件的突出缺陷

关键代码如下:

//开运算
    Mat openImg;
    Mat element=cv::getStructuringElement(MORPH_ELLIPSE,Size(131,131)); 

    cv::erode(binary,openImg,element);
    cv::dilate(openImg,openImg,element);
    //或者直接使用下面的操作,和上面两步结果是一样的
    //cv::morphologyEx(binary,openImg,CV_MOP_OPEN,element);

    imshow("openImg",openImg);
    cv::imwrite("openImg.jpg",openImg);

    Mat burrImg=binary-openImg;

    Mat element2=cv::getStructuringElement(MORPH_ELLIPSE,Size(3,3));    
    cv::morphologyEx(burrImg,burrImg,CV_MOP_OPEN,element2);//消除由于计算中小误差带来的圆形边界

    imshow("burrImg",burrImg);
    cv::imwrite("burrImg.jpg",burrImg);
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页