Linux 内存映射以及内存是如何工作的

同CPU管理一样,内存管理也是操作系统最核心的功能之一。内存主要用来存储系统和应用程序的指令、数据、缓存等。

那么,Linux 到底是怎么管理内存的呢?今天,我就来带你一起来看看这个问题。 

 

那么,Linux 到底是怎么管理内存的呢?


说到内存,你能说出你现在用的这台计算机内存有多大吗? 我估计你记得很清楚,因为这是我们购买时,首先考虑的一个重要参数,比方说,我的笔记本电脑内存就是8GB的。

我们通常所说的内存容量,就像我刚刚提到的8GB,其实指的是物理内存。物理内存也称为主存,大多数计算机用的主存都是动态随机访问内存(DRAM)。只有内核才可以直接访问物理内存。那么,进程要访问内存时,该怎么办呢?

Linux 内核给每个进程都提供了一个独立的虚拟地址空间,并且这个地址空间是连续的。这样,进程就可以很方便地访问内存,更确切地说是访问虚拟内存。

虚拟地址空间的内部又被分为内核空间和用户空间两部分,不同字长(也就是单个CPU指令可以处理数据的最大长度)的处理器,地址空间的范围也不同。比如最常见的32位和64位系统,我画了两张图来分别表示它们的虚拟地址空间,如下所示∶

通过这里可以看出,32位系统的内核空间占用1G,位于最高处,剩下的3G是用户空间。而64位系统的内核空间和用户空间都是128T,分别占据整个内存空间的最高和最低处,剩下的中间部分是未定义的。

还记得进程的用户态和内核态吗?进程在用户态时,只能访问用户空间内存,只有进入内核态后,才可以访问内核空间内存。虽然每个进程的地址空间都包含了内核空间,但这些内核空间,其实关联的都是相同的物理内存。这样,进程切换到内核态后,就可以很方便地访问内核空间内存。

既然每个进程都有一个这么大的地址空间,那么所有进程的虚拟内存加起来,自然要比实际的物理内存大得多。所以,并不是所有的虚拟内存都会分配物理内存,只有那些实际使用的虚拟内存才分配物理内存,并且分配后的物理内存,是通过内存映射来管理的。

内存映射,其实就是将虚拟内存地址映射到物理内存地址。为了完成内存映射,内核为每个进程都维护了一张页表,记录虚拟地址与物理地址的映射关系,如下图所示∶

页表实际上存储在CPU的内存管理单元 MMU中,这样,正常情况下,处理器就可以直接通过硬件,找出要访问的内存。

 

MMU(Memory Management Unit)

MMU是CPU的一个用来将进程的虚拟地址转换成物理地址的模块,简单点说,这个模块的输入是进程的page table和虚拟地址,输出是物理地址。将虚拟地址转换成物理地址的速度直接影响着系统的速度,所以CPU包含了这个模块用来加速。

 

 TLB(Translation Lookaside Buffer)

上面介绍到,MMU的输入是page table,而page table又存在内存里面,跟CPU的cache相比,内存的速度很慢,所以为了进一步加快虚拟地址到物理地址的转换速度,Linux发明了TLB,它存在于CPU的L1 cache里面,用来缓存已经找到的虚拟地址到物理地址的映射,这样下次转换前先查一下TLB,如果已经在里面了就不需要调用MMU了.

 

而当进程访问的虚拟地址在页表中查不到时,系统会产生一个缺页异常,进入内核空间分配物理内存、更新进程页表,最后再返回用户空间,恢复进程的运行。

另外,CPU上下文切换,TLB(Translation Lookaside Buffer,转译后备缓冲器)会影响CPU的内存访问性能,在这里其实就可以得到解释。(根据Tsuna的测试报告,每次上下文切换都需要几十纳秒到数微秒的CPU时间。这个时间还是相当可观的,特别是在进程上下文切换次数较多的情况下,很容易导致CPU将大量时间耗费在寄存器、内核栈以及虚拟内存等资源的保存和恢复上,进而大大缩短了真正运行进程的时间。这也正是导致平均负载升高的一个重要因素。

另外,我们知道,Linux通过 TLB(Translation Lookaside Buffer)来管理虚拟内存到物理内存的映射关系。当虚拟内存更新后,TLB也需要刷新,内存的访问也会随之变慢。特别是在多处理器系统上,缓存是被多个处理器共享的,刷新缓存不仅会影响当前处理器的进程,还会影响共享缓存的其他处理器的进程。)

TLB其实就是 MMU中页表的高速缓存。由于进程的虚拟地址空间是独立的,而TLB的访问速度又比MMU快得多,所以,通过减少进程的上下文切换,减少 TLB的刷新次数,就可以提高TLB缓存的使用率,进而提高 CPU的内存访问性能。

总结一下MMU和TLB:MMU全称就是内存管理单元,管理地址映射关系(也就是页表)。但MMU的性能跟CPU比还是不够快,所以又有了TLB。TLB实际上是MMU的一部分,把页表缓存起来以提升性能。 

不过要注意,MMU并不以字节为单位来管理内存,而是规定了一个内存映射的最小单位,也就是页,通常是4KB大小。这样,每一次内存映射,都需要关联4KB 或者4KB整数倍的内存空间。

页的大小只有4KB,导致的另一个问题就是,整个页表会变得非常大。比方说,仅32位系统就需要100多万个页表项(4GB/4KB),才可以实现整个地址空间的映射。为了解决页表项过多的问题,Linux 提供了两种机制,也就是多级页表和大页(HugePage)。

 

多级页表和大页


多级页表就是把内存分成区块来管理,将原来的映射关系改成区块索引和区块内的偏移。由于虚拟内存空间通常只用了很少一部分,那么,多级页表就只保存这些使用中的区块,这样就可以大大地减少页表的项数。

Linux 用的正是四级页表来管理内存页,如下图所示,虚拟地址被分为5个部分,前4个表项用于选择页,而最后一个索引表示页内偏移。

再看大页,顾名思义,就是比普通页更大的内存块,常见的大小有2MB和 1GB。大页通常用在使用大量内存的进程上,比如Oracle、DPDK 等。

通过这些机制,在页表的映射下,进程就可以通过虚拟地址来访问物理内存了那么具体到一个Linux 进程中,这些内存又是怎么使用的呢?

 

虚拟内存空间分布


首先,我们需要进一步了解虚拟内存空间的分布情况。最上方的内核空间不用多讲,下方的用户空间内存,其实又被分成了多个不同的段。以 32 位系统为例,我画了一张图来表示它们的关系。

通过这张图你可以看到,用户空间内存,从低到高分别是五种不同的内存段。

  1. 只读段,包括代码和常量等。
  2. 数据段,包括全局变量等。
  3. 堆,包括动态分配的内存,从低地址开始向上增长。
  4. 文件映射段,包括动态库、共享内存等,从高地址开始向下增长。
  5. 栈,包括局部变量和函数调用的上下文等。栈的大小是固定的,一般是 8 MB。

在这五个内存段中,堆和文件映射段的内存是动态分配的。比如说,使用 C 标准库的 malloc() 或者 mmap() ,就可以分别在堆和文件映射段动态分配内存。其实 64 位系统的内存分布也类似,只不过内存空间要大得多。那么,更重要的问题来了,内存究竟是怎么分配的呢?

 

内存分配


malloc() 是 C 标准库提供的内存分配函数,对应到系统调用上,有两种实现方式,即 brk() 和 mmap()。 

对小块内存(小于 128K),C 标准库使用 brk() 来分配,也就是通过移动堆顶的位置来分配内存。这些内存释放后并不会立刻归还系统,而是被缓存起来,这样就可以重复使用。

而大块内存(大于 128K),则直接使用内存映射 mmap() 来分配,也就是在文件映射段找一块空闲内存分配出去。

brk() 方式的缓存,可以减少缺页异常的发生,提高内存访问效率。不过,由于这些内存没有归还系统,在内存工作繁忙时,频繁的内存分配和释放会造成内存碎片。

了解这两种调用方式后,我们还需要清楚一点,那就是,当这两种调用发生后,其实并没有真正分配内存。这些内存,都只在首次访问时才分配,也就是通过缺页异常进入内核中,再由内核来分配内存

整体来说,Linux 使用伙伴系统来管理内存分配。前面我们提到过,这些内存在 MMU 中以页为单位进行管理,伙伴系统也一样,以页为单位来管理内存,并且会通过相邻页的合并,减少内存碎片化(比如 brk 方式造成的内存碎片)。 

你可能会想到一个问题,如果遇到比页更小的对象,比如不到 1K 的时候,该怎么分配内存呢?

实际系统运行中,确实有大量比页还小的对象,如果为它们也分配单独的页,那就太浪费内存了。

在内核空间,Linux 则通过 slab 分配器来管理小内存。你可以把 slab 看成构建在伙伴系统上的一个缓存,主要作用就是分配并释放内核中的小对象。

 

kmalloc


内核中最常用的内存分配函数就是kmalloc(),当需要申请小块内存时,优先考虑使用kmalloc。kmalloc是基于slab分配器进行工作的,先简单介绍一下Slab。

Buddy系统管理内存是以page(4k)为单位的,当分配小内存时,几十字节甚至几个字节,也需要申请一页的空间就太浪费了,所以就有了Slab。Slab对Buddy申请的内存进行二次管理,管理的单元为object。一种类型的object可以有一个或多个Slab,但一个Slab中只有一种Object。对频繁使用的object,内核就会针对这个object创建slab,来提高分配释放效率。一个Slab中按object大小进行划分,当系统分配和释放object时,会从该slab中获取和归还,避免了频繁的内存分配释放。

linux_address_6.png

linux_address_6.png 

 

  • slab是为了解决小块内存分配产生的内部碎片而产生的。
  • slab又有不同的实现方式,如slab、slob、slub。最新的内核中使用slub。
  • slab会缓存频繁使用的对象,减少分配、释放的时间。
  • slab分配的内存在物理上是连续的。
  • slab高速缓存通过kmem_cache来描述,每一个kmem_cache中存有一种对象的高速缓存。
  • kmem_cache通过三个链表来管理slab缓存:slabs_full(完全分配),slabs_partial(部分分配的),slabs_empty(未分配)。
  • slab可分为普通高速缓存和专用高速缓存两类。专用缓存为具体的对象创建,根据对象命名。普通缓存不指定特定对象,根据大小命名。

Slab的分配信息可以通过/proc/slabinfo来查看。其中以kmalloc-xxx来命名的是通用的Slab,object大小固定的,由kmalloc分配使用。其他以object名字命名的是专用的slab,是内核为频繁使用的object创建的。

slabinfo - version: 2.1
# name                        <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> <total bytes> : tunables <limit> <batchcount> <sharedfactor> : slabdata <active_slabs> <num_slabs> <sharedavai>
zs_handle                         1024   1024      8  512    1     8192 : tunables    0    0    0 : slabdata      2      2      0
ext4_groupinfo_4k                   64     64    128   32    1     8192 : tunables    0    0    0 : slabdata      2      2      0
ip6_dst_cache                       42     42    384   21    2    16128 : tunables    0    0    0 : slabdata      2      2      0
UDPLITEv6                            0      0   1024    8    2        0 : tunables    0    0    0 : slabdata      0      0      0
UDPv6                               16     16   1024    8    2    16384 : tunables    0    0    0 : slabdata      2      2      0
......
kmalloc-8192                        49     52   8192    1    2   425984 : tunables    0    0    0 : slabdata     52     52      0
kmalloc-4096                       117    126   4096    2    2   516096 : tunables    0    0    0 : slabdata     63     63      0
kmalloc-2048                       517    524   2048    4    2  1073152 : tunables    0    0    0 : slabdata    131    131      0
kmalloc-1024                       538    664   1024    8    2   679936 : tunables    0    0    0 : slabdata     83     83      0
......

kmalloc就是通过slab的普通高速缓存来分配内存的。kmalloc的实现也很简单,就是在slab的普通高速缓存中寻找一个大小最匹配缓存。因为kmalloc分配的内存是物理连续的,而物理连续的内存是非常珍贵的,所以除非必要,否则大块内存(以页为单位)分配应该使用vmalloc和get_free_pages。kmalloc可以分配的最大值在不同的硬件架构上是不同的,并且使用的分配器类型也有影响。例如在ARM32上使用slub分配器时,kmalloc()可接受的最大size为8M。但是当size大于8K时,kmalloc()的内部实现调用了__get_free_pages()。

 

内存回收


对内存来说,如果只分配而不释放,就会造成内存泄漏,甚至会耗尽系统内存。所以,在应用程序用完内存后,还需要调用 free() 或 unmap() ,来释放这些不用的内存。 

当然,系统也不会任由某个进程用完所有内存。在发现内存紧张时,系统就会通过一系列机制来回收内存,比如下面这三种方式:

  • 回收缓存,比如使用 LRU(Least Recently Used)算法,回收最近使用最少的内存页面
  • 回收不常访问的内存,把不常用的内存通过交换分区直接写到磁盘中
  • 杀死进程,内存紧张时系统还会通过 OOM(Out of Memory),直接杀掉占用大量内存的进程 

其中,第二种方式回收不常访问的内存时,会用到交换分区(以下简称 Swap)。Swap 其实就是把一块磁盘空间当成内存来用。它可以把进程暂时不用的数据存储到磁盘中(这个过程称为换出),当进程访问这些内存时,再从磁盘读取这些数据到内存中(这个过程称为换入)。

所以,你可以发现,Swap 把系统的可用

内存变大了。不过要注意,通常只在内存不足时,才会发生 Swap 交换。并且由于磁盘读写的速度远比内存慢,Swap 会导致严重的内存性能问题。

第三种方式提到的  OOM(Out of Memory),其实是内核的一种保护机制。它监控进程的内存使用情况,并且使用 oom_score 为每个进程的内存使用情况进行评分:

  • 一个进程消耗的内存越大,oom_score 就越大
  • 一个进程运行占用的 CPU 越多,oom_score 就越小。 

这样,进程的 oom_score 越大,代表消耗的内存越多,也就越容易被 OOM 杀死,从而可以更好保护系统。

当然,为了实际工作的需要,管理员可以通过 /proc 文件系统,手动设置进程的 oom_adj ,从而调整进程的 oom_score。

oom_adj 的范围是 [-17, 15],数值越大,表示进程越容易被 OOM 杀死;数值越小,表示进程越不容易被 OOM 杀死,其中 -17 表示禁止 OOM。

比如用下面的命令,你就可以把 sshd 进程的 oom_adj 调小为 -16,这样, sshd 进程就不容易被 OOM 杀死。 

echo -16 > /proc/$(pidof sshd)/oom_adj

 

如何查看内存使用情况


通过了解内存空间的分布,以及内存的分配和回收,我想你对内存的工作原理应该有了大概的认识。当然,系统的实际工作原理更加复杂,也会涉及其他一些机制,这里我只讲了最主要的原理。掌握了这些,你可以对内存的运作有一条主线认识,不至于脑海里只有术语名词的堆砌。那么在了解内存的工作原理之后,我们又该怎么查看系统内存使用情况呢?

其实前面CPU内容的学习中,我们也提到过一些相关工具。在这里,你第一个想到的应该是free 工具吧。下面是一个 free 的输出示例∶

你可以看到,free输出的是一个表格,其中的数值都默认以字节为单位。表格总共有两行六列,这两行分别是物理内存Mem和交换分区Swap的使用情况,而六列中,每列数据的含义分别为∶

● 第一列,total是总内存大小

● 第二列, used是已使用内存的大小,包含了共享内存

● 第三列,free是未使用内存的大小

● 第四列, shared是共享内存的大小

● 第五列,buff/cache是缓存和缓冲区的大小

● 最后一列,available是新进程可用内存的大小。

这里尤其注意一下,最后一列的可用内存 available。available不仅包含未使用内存,还包括了可回收的缓存,所以一般会比未使用内存更大。不过,并不是所有缓存都可以回收,因为有些缓存可能正在使用中。

不过,我们知道,free显示的是整个系统的内存使用情况。如果你想查看进程的内存使用情况,可以用 top或者 ps等工具。比如,下面是 top的输出示例∶

top输出界面的顶端,也显示了系统整体的内存使用情况,这些数据跟free类似,我就不再重复解释。我们接着看下面的内容,跟内存相关的几列数据,比如 VIRT、RES、SHR 以及%MEM等。

这些数据,包含了进程最重要的几个内存使用情况,我们挨个来看。

VIRT:VIRT是进程虚拟内存的大小,只要是进程申请过的内存,即便还没有真正分配物理内存,也会计算在内。

1、进程“需要的”虚拟内存大小,包括进程使用的库、代码、数据,以及malloc、new分配的堆空间和分配的栈空间等;
2、假如进程新申请10MB的内存,但实际只使用了1MB,那么它会增长10MB,而不是实际的1MB使用量。
3、VIRT = SWAP + RES

RES: RES是常驻内存的大小,也就是进程实际使用的物理内存大小,但不包括Swap和共享内存。

1、进程当前使用的内存大小,包括使用中的malloc、new分配的堆空间和分配的栈空间,但不包括swap out量;
2、包含其他进程的共享;
3、如果申请10MB的内存,实际使用1MB,它只增长1MB,与VIRT相反;
4、关于库占用内存的情况,它只统计加载的库文件所占内存大小。
5、RES = CODE + DATA

SHR:SHR 是共享内存的大小,比如与其他进程共同使用的共享内存加载的动态链接库以及程序的代码段等。

1、除了自身进程的共享内存,也包括其他进程的共享内存;
2、虽然进程只使用了几个共享库的函数,但它包含了整个共享库的大小;
3、计算某个进程所占的物理内存大小公式:RES – SHR;
4、swap out后,它将会降下来。

%MEM:是进程使用物理内存占系统总内存的百分比。除了要认识这些基本信息,在查看 top输出时,你还要注意两点。

第一,虚拟内存通常并不会全部分配物理内存。从上面的输出,你可以发现每个进程的虚拟内存都比常驻内存大得多。

第二,共享内存SHR 并不一定是共享的,比方说,程序的代码段、非共享的动态链接库,也都算在SHR里。当然,SHR也包括了进程间真正共享的内存。所以在计算多个进程的内存使用时,不要把所有进程的 SHR 直接相加得出结果。

 

小结


今天,我们梳理了 Linux 内存的工作原理。对普通进程来说,它能看到的其实是内核提供的虚拟内存,这些虚拟内存还需要通过页表,由系统映射为物理内存。

当进程通过malloc()申请内存后,内存并不会立即分配,而是在首次访问时,才通过缺页异常陷入内核中分配内存。

由于进程的虚拟地址空间比物理内存大很多,Linux 还提供了一系列的机制,应对内存不足的问题,比如缓存的回收、交换分区 Swap 以及OOM 等。

当你需要了解系统或者进程的内存使用情况时,可以用 free和 top、ps 等性能工具。它们都是分析性能问题时最常用的性能工具,希望你能熟练使用它们,并真正理解各个指标的含义。

©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页