NYOJ - 239 - 月老的难题 ( 二分图最大匹配 匈牙利算法 )

描述

月老准备给n个女孩与n个男孩牵红线,成就一对对美好的姻缘。

现在,由于一些原因,部分男孩与女孩可能结成幸福的一家,部分可能不会结成幸福的家庭。

现在已知哪些男孩与哪些女孩如果结婚的话,可以结成幸福的家庭,月老准备促成尽可能多的幸福家庭,请你帮他找出最多可能促成的幸福家庭数量吧。

假设男孩们分别编号为1~n,女孩们也分别编号为1~n。

输入
第一行是一个整数T,表示测试数据的组数(1<=T<=400)
每组测试数据的第一行有两个整数n,K,其中男孩的人数与女孩的人数都是n。(n<=500,K<=10 000)
随后的K行,每行有两个整数i,j表示第i个男孩与第j个女孩有可能结成幸福的家庭。(1<=i,j<=n)
输出
对每组测试数据,输出最多可能促成的幸福家庭数量
样例输入
1
3 4
1 1
1 3
2 2
3 2
样例输出
2


题目解法:匈牙利算法


#include<cstdio>
#include<vector>
#include<cstring>
#define N 505
using namespace std;
int T,n,k,a,b;
vector<int>g[N];
int vis[N],left[N];

bool dfs(int u){
	for(int i=0 ;i<g[u].size();i++){
		int v = g[u][i];
		if(vis[v])continue;
		vis[v] = 1;
		if(!left[v] || dfs(left[v])){
			left[v] = u;
			return true;
		}
	}
	return false;
}

int hungary(){
	int ans = 0;
	memset(left,0,sizeof(left));
	for(int i=1 ;i<=n ;i++){
		memset(vis,0,sizeof(vis));
		if(dfs(i))ans++;
	}
	return ans;
}

void init(){
	for(int i=0 ;i<N ;i++) g[i].clear();
	memset(vis,0,sizeof(vis));
	scanf("%d%d",&n,&k);
	for(int i=0; i<k ;i++){
		scanf("%d%d",&a,&b);
		g[a].push_back(b);
	}
}
int main(){
	scanf("%d",&T);
	while(T--){
		init();
		printf("%d\n",hungary()); 
	}	
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值