Bloom Filter 概念和原理

原文链接

Bloom Filter 概念和原理

焦萌 2007 年 1 月 27 日

Bloom Filter 是一种空间效率很高的随机数据结构,它利用位数组很 简洁地表示一个集合,并能判断一个元素是否属于这个集合。 Bloom Filter 的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。 因此,Bloom Filter 不适合那些 “零错误” 的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter 通过极少的错误换取了存储空间的极大节省。

集合表示和元素查询

下面我们具体来看 Bloom Filter 是如何用位数组表示集合的。初始状态时,Bloom Filter 是一个包含 m 位的位数组,每一位都置为 0。

在这里插入图片描述

为了表达 S={x1, x2,…,xn} 这样一个 n 个元素的集合,Bloom Filter 使用 k 个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到 {1,…,m} 的范围中。对任意一个元素 x,第 i 个哈希函数映射的位置 hi(x) 就会被置为 1(1≤i≤k)。注意,如果一个位置多次被置为 1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位)。

在这里插入图片描述

在判断 y 是否属于这个集合时,我们对 y 应用 k 次哈希函数,如果所有 hi(y) 的位置都是 1(1≤i≤k),那么我们就认为 y 是集合中的元素,否则就认为 y 不是集合中的元素。下图中 y1 就不是集合中的元素。y2 或者属于这个集合,或者刚好是一个 false positive。

在这里插入图片描述

错误率估计

前面我们已经提到了,Bloom Filter 在判断一个元素是否属于它表示的集合时会有一定的错误率(false positive rate),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设 kn<m 且各个哈希函数是完全随机的。当集合 S={x1, x2,…,xn} 的所有元素都被 k 个哈希函数映射到 m 位的位数组中时,这个位数组中某一位还是 0 的概率是:

在这里插入图片描述

令 p = e − k n / m e^{-kn/m} ekn/m 是为了简化运算,这里用到了计算 e 时常用的近似(m趋于∞)。

令ρ为位数组中 0 的比例,则ρ的数学期望 E(ρ)= p。在ρ已知的情况下,要求的错误率(false positive rate)为:

在这里插入图片描述

(1-ρ) 为位数组中 1 的比例, ( 1 − ρ ) k (1-ρ)^k (1ρ)k 就表示 k 次哈希都刚好选中 1 的区域,即 false positive rate(此处为PR吧)。上式中第二步近似在前面已经提到了,现在来看第一步近似。p’只是ρ的数学期望,在实际中ρ的值有可能偏离它的数学期望值M. Mitzenmacher 已经证明 [2] ,位数组中 0 的比例非常集中地分布在它的数学期望值的附近。 因此,第一步的近似得以成立。分别将 p 和 p’代入上式中,得:

在这里插入图片描述

在这里插入图片描述

相比 p’和 f’,使用 p 和 f 通常在分析中更为方便。

最优的哈希函数个数

既然 Bloom Filter 要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?
这里有两个互斥的理由:

  • 如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到 0 的概率就大;()
  • 如果哈希函数的个数少,那么位数组中的 0 就多。(直观感受:当0多时查到0的概率就高)

为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。

先用 p 和 f 进行计算。注意到 f = e k l n ( 1 − e − k n / m ) e^{k ln(1 − e^{−kn/m})} ekln(1ekn/m),我们令 g = k l n ( 1 − e − k n / m ) k ln(1 − e^{−kn/m}) kln(1ekn/m),只要让 g 取到最小,f 自然也取到最小。

由于 p = e-kn/m,我们可以将 g 写成

在这里插入图片描述

根据对称性法则可以很容易看出当 p = 1/2,也就是 k = ln2· (m/n) 时,g 取得最小值
在这种情况下,最小错误率 f 等于 ( 1 / 2 ) k ≈ ( 0.6185 ) m / n (1/2)^k ≈ (0.6185)^{m/n} (1/2)k(0.6185)m/n

另外,注意到 p 是位数组中某一位仍是 0 的概率,所以 p = 1/2 对应着位数组中 0 和 1 各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。

需要强调的一点是,p = 1/2 时错误率最小这个结果并不依赖于近似值 p 和 f。同样对于 f ’ = e k l n ( 1 − ( 1 − 1 / m ) k n ) f’ = e^{k ln(1 − (1 − 1/m)^{kn})} f=ekln(1(11/m)kn) g ’ = k l n ( 1 − ( 1 − 1 / m ) k n ) g’ = k ln(1 − (1 − 1/m)^{kn}) g=kln(1(11/m)kn) p ’ = ( 1 − 1 / m ) k n p’ = (1 − 1/m)^{kn} p=(11/m)kn,我们可以将 g’写成

在这里插入图片描述

同样根据对称性法则可以得到当 p’ = 1/2 时,g’取得最小值。

位数组的大小

下面我们来看看,在不超过一定错误率的情况下,Bloom Filter 至少需要多少位才能表示全集中任意 n 个元素的集合。

假设全集中共有 u 个元素,允许的最大错误率为є,下面我们来求位数组的位数 m。
假设 X 为全集中任取 n 个元素的集合,F(X) 是表示 X 的位数组。

那么对于集合 X 中任意一个元素 x,在 s = F(X) 中查询 x 都能得到肯定的结果,即 s 能够接受 x。显然,由于 Bloom Filter 引入了错误,s 能够接受的不仅仅是 X 中的元素,它还能够接受є (u - n) 个 false positive(FP)。因此,对于一个确定的位数组来说,它能够接受总共 n + є (u - n) 个元素。 在 n + є (u - n) 个元素中,s 真正表示的只有其中 n 个 ,所以一个确定的位数组可以表示 ∁ n n + є ( u − n ) \complement^n_n+ є (u - n) nn+є(un)

在这里插入图片描述

个集合。m 位的位数组共有 2m 个不同的组合,进而可以推出,m 位的位数组可以表示 2 m ∁ n n + є ( u − n ) 2^m\complement^n_n+ є (u - n) 2mnn+є(un)

在这里插入图片描述

个集合。全集中 n 个元素的集合总共有 ∁ u n \complement^n_u un

在这里插入图片描述

个,因此要让 m 位的位数组能够表示所有 n 个元素的集合,必须有 2 m ∁ n n + є ( u − n ) ≥ ∁ u n 2^m\complement^n_n+ є (u - n)\ge\complement^n_u 2mnn+є(un)un

在这里插入图片描述

即:

在这里插入图片描述

上式中的近似前提是 n 和єu 相比很小,这也是实际情况中常常发生的

根据上式,我们得出结论:在错误率不大于є的情况下,m 至少要等于 n l o g 2 ( 1 / є ) n log_2^{(1/є)} nlog2(1/є) 才能表示任意 n 个元素的集合。

上一小节中我们曾算出当 k = ln2· (m/n) 时错误率 f 最小,这时 f = ( 1 / 2 ) k (1/2)^k (1/2)k = ( 1 / 2 ) m l n 2 / n (1/2)mln2 / n (1/2)mln2/n。现在令 f≤є,可以推出

在这里插入图片描述

这个结果比前面我们算得的下界 n log ⁡ 2 1 / є n \log_2^{1/є} nlog21/є 大了 l o g 2 e log_2^e log2e ≈ 1.44 倍。这说明在哈希函数的个数取到最优时,要让错误率不超过є,m 至少需要取到最小值的 1.44 倍。

总结

在计算机科学中,我们常常会碰到时间换空间或者空间换时间的情况,即为了达到某一个方面的最优而牺牲另一个方面。Bloom Filter 在时间空间这两个因素之外又引入了另一个因素:错误率。在使用 Bloom Filter 判断一个元素是否属于某个集合时,会有一定的错误率。也就是说,有可能把不属于这个集合的元素误认为属于这个集合(False Positive),但不会把属于这个集合的元素误认为不属于这个集合(False Negative)。在增加了错误率这个因素之后,Bloom Filter 通过允许少量的错误来节省大量的存储空间。

自从 Burton Bloom 在 70 年代提出 Bloom Filter 之后,Bloom Filter 就被广泛用于拼写检查和数据库系统中。近一二十年,伴随着网络的普及和发展,Bloom Filter 在网络领域获得了新生,各种 Bloom Filter 变种和新的应用不断出现。可以预见,随着网络应用的不断深入,新的变种和应用将会继续出现,Bloom Filter 必将获得更大的发展。

参考资料

[1] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. Internet Mathematics, 1(4):485–509, 2005.

[2] M. Mitzenmacher. Compressed Bloom Filters. IEEE/ACM Transactions on Networking 10:5 (2002), 604—612.

[3] www.cs.jhu.edu/~fabian/courses/CS600.624/slides/bloomslides.pdf

[4] http://166.111.248.20/seminar/2006_11_23/hash_2_yaxuan.ppt

简单实现(Java)

import java.util.BitSet;

public class BloomFilter {
    private static final int DEFAULT_SIZE = 2 << 24;
    private static final int[] seeds = new int[]{7, 11, 13, 31, 37, 61,};
    private static BloomFilter instance = null;

    private BitSet bits = new BitSet(DEFAULT_SIZE);
    private SimpleHash[] func = new SimpleHash[seeds.length];

    private BloomFilter() {
        if (instance == null)
            for (int i = 0; i < seeds.length; i++) {
                func[i] = new SimpleHash(DEFAULT_SIZE, seeds[i]);
            }
    }

    public static BloomFilter getBloomFilter() {
        if (instance == null) {
            synchronized (BloomFilter.class) {
                instance = new BloomFilter();
            }
        }
        return instance;
    }

    @Override
    protected Object clone() throws CloneNotSupportedException {
        return instance;
    }

    public void add(String value) {
        for (SimpleHash f : func) {
            bits.set(f.hash(value), true);
        }
    }

    public boolean contains(String value) {
        if (value == null) {
            return false;
        }
        boolean ret = true;
        for (SimpleHash f : func) {
            ret = ret && bits.get(f.hash(value));
        }
        return ret;
    }

    private static class SimpleHash {

        private int cap;
        private int seed;

        private SimpleHash(int cap, int seed) {
            this.cap = cap;
            this.seed = seed;
        }

        private int hash(String value) {
            int result = 0;
            int len = value.length();
            for (int i = 0; i < len; i++) {
                result = seed * result + value.charAt(i);
            }
            return (cap - 1) & result;
        }
    }
}

简单实现(Python)

from random import randint

import numpy as np
from sklearn.utils import murmurhash3_32
def hashfunc(m):
	"""
	独立的hash函数实现
	"""
    ss = randint(1, 99999999)
    def hash_m(x):
        return murmurhash3_32(x, seed=ss) % m

    return hash_m


'''
Class for Standard Bloom filter
'''
class BloomFilter():
    def __init__(self, n, hash_len):
        """
        :param n: nums of keys 
        :param hash_len: size of BF
        """
        self.n = n
        self.hash_len = int(hash_len)
        if (self.hash_len == 0):
            raise SyntaxError('The hash table is empty')
        if (self.n > 0) & (self.hash_len > 0):
            self.k = max(1, int(self.hash_len / n * 0.6931472))  # hash func nums
        elif (self.n == 0):
            self.k = 1
        self.h = []
        for i in range(self.k):
            self.h.append(hashfunc(self.hash_len))   # 哈希函数列表
        self.table = np.zeros(self.hash_len, dtype=int)
        # print("keys:{3} hash func nums: {0}    \nhash func:{1}   \nset:{2}".format(self.k, list(self.h), self.table,self.n))

    def insert(self, key):
        if self.hash_len == 0:
            raise SyntaxError('cannot insert to an empty hash table')
        for i in key:
            for j in range(self.k):
                t = self.h[j](i)
                self.table[t] = 1
    def test(self, keys, single_key=True):
    	"""
    	keys: 待查询数据
    	single_key: okay
    	"""
        if single_key:  
            test_result = 0
            match = 0
            if self.hash_len > 0:
                for j in range(self.k):
                    t = self.h[j](keys)
                    match += 1 * (self.table[t] == 1)
                if match == self.k:
                    test_result = 1
        else:
        	test_result = np.zeros(len(keys))
        	ss = 0
            if self.hash_len > 0:
                for key in keys:
                    match = 0
                    for j in range(self.k):
                        t = self.h[j](key)
                        match += 1 * (self.table[t] == 1)
                    if match == self.k:
                        test_result[ss] = 1
                        if ss<100:  # 前100条url发生hash碰撞的URL
                        	print("matched url:{0}".format(key))
                    ss += 1
        return test_result

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值