HDU2050 折线分割平面解题报告

转载自:http://blog.csdn.net/a576323437/article/details/6163850

题目:http://acm.hdu.edu.cn/showproblem.php?pid=2050

我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分。

解题思路:

1递推递推,先分析下直线分割平面的情况,增加第n条直线的时候,跟之前的直线最多有n-1个交点,此时分出的部分多出了(n-1)+1;

2折线也是同理,f(1)=2,f(2)=7,先画好前面n-1条折线,当增加第n条拆线时,此时与图形新的交点最多有2*2(n-1)个,所以分出的部分多出了2*2(n-1)+1   所以推出f(n)=f(n-1)+4*(n-1)+1,n>=3

  1. #include <stdio.h>  
  2. int main()  
  3. {  
  4.     int n,i,k,j;  
  5.     __int64 a[10010];  
  6.     scanf("%d",&n);  
  7.     for(i=1;i<=n;i++)  
  8.     {  
  9.         scanf("%d",&k);  
  10.         a[1]=2;  
  11.         for(j=2;j<=k;j++)  
  12.             a[j]=a[j-1]+4*(j-1)+1;  
  13.         printf("%I64d\n",a[k]);  
  14.     }  
  15.     return 0;  
  16. }  

import java.util.Scanner;

public class HDU2050 {
	static Long[] f = new Long[10000+10];
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		dfs();
		int t = in.nextInt();
		while (t-- != 0) {
			int n = in.nextInt();
			System.out.println(f[n]);
		}
	}
	public static void dfs() {
		f[1] = 2L;
		f[2] = 7L;
		for (int i = 3; i < 10000+10; i++) {
			f[i] = f[i - 1] + 4*(i-1) + 1;
		}
	}
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页