Become hunger become strong

坚强的动力

POJ 1704 nim博弈问题

Georgia and Bob
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 11714 Accepted: 3877

Description

Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, number the grids from left to right by 1, 2, 3, ..., and place N chessmen on different grids, as shown in the following figure for example: 

Georgia and Bob move the chessmen in turn. Every time a player will choose a chessman, and move it to the left without going over any other chessmen or across the left edge. The player can freely choose number of steps the chessman moves, with the constraint that the chessman must be moved at least ONE step and one grid can at most contains ONE single chessman. The player who cannot make a move loses the game. 

Georgia always plays first since "Lady first". Suppose that Georgia and Bob both do their best in the game, i.e., if one of them knows a way to win the game, he or she will be able to carry it out. 

Given the initial positions of the n chessmen, can you predict who will finally win the game? 

Input

The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. Each test case contains two lines. The first line consists of one integer N (1 <= N <= 1000), indicating the number of chessmen. The second line contains N different integers P1, P2 ... Pn (1 <= Pi <= 10000), which are the initial positions of the n chessmen.

Output

For each test case, prints a single line, "Georgia will win", if Georgia will win the game; "Bob will win", if Bob will win the game; otherwise 'Not sure'.

Sample Input

2
3
1 2 3
8
1 5 6 7 9 12 14 17

Sample Output

Bob will win

Georgia will win

把棋子两个分为一组,然后对于每一组中的两个棋子的间隔,其实就是可以转化为Nim博弈中取石子的问题,

具体来说,当右边那个棋子向左移动的时候,就相当于从Nim的石子堆中取走石子;左边的棋子向左移动的话,石子的数量

就增加了,这与Nim不同,(但是即使对手增加了石子的数量,只要将所加部分减回去就回到了原来的状态;

即使自己增加了石子的数量只要所加部分减回去就回到了原来的状态

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
using namespace std;
const int maxn = 1000;
int p[maxn], n;
void solve() {
	if (n%2 == 1) p[n++] = 0;
	sort(p, p + n);
	int x = 0;
	for (int i = 0; i + 1 < n; i += 2) {
		x ^= (p[i + 1] - p[i] - 1);
	}
	if (x == 0) puts("Bob will win");
	else puts("Georgia will win");
}
int main() {
	int t;
	cin >> t;
	while (t-- != 0) {
		cin >> n;
		memset(p, 0, sizeof(p));
		for (int i = 0; i < n; i++) {
			cin >> p[i];
		}
		solve();
	}

	return 0;
}

阅读更多
版权声明:版权声明:本文为博主原创文章,未经博主允许不得转载 @爬动的小蜗牛 https://blog.csdn.net/qq_34649947/article/details/80331833
个人分类: 博弈论
上一篇Codeforces Round #482 (Div. 2) C
下一篇Linux 开源操作系统介绍 --入门1
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭