天池语义分割task04

TP TN FP FN

在讲解语义分割中常用的评价函数和损失函数之前,先补充一 TP(真正例 true positive) TN(真反例 true negative) FP(假正例 false positive) FN(假反例 false negative) 的知识。在分类问题中,我们经常看到上述的表述方式,以二分类为例,我们可以将所有的样本预测结果分成 TP、TN、FP、FN 四类,并且每一类含有的样本数量之和为总样本数量,即TP+FP+FN+TN= 总样本数量。其混淆矩阵如下:

上述的概念都是通过以预测结果的视角定义的,可以依据下面方式理解:
• 预测结果中的正例 在实际中是正例 的所有样本被称为真正例(TP)< 预测正确 >
• 预测结果中的正例 在实际中是反例 的所有样本被称为假正例(FP)< 预测错误 >
• 预测结果中的反例 在实际中是正例 的所有样本被称为假反例(FN)< 预测错误 >
• 预测结果中的反例 在实际中是反例 的所有样本被称为真反例(TN)< 预测正确 >
这里就不得不提及精确率(precision)和召回率(recall):

P recision =T P/(T P + F P)
Recall =T P/(T P + F N)
P recision 代表了预测的正例中真正的正例所占比例;Recall 代表了真正的正例中被正确预测出来的比例。
转移到语义分割任务中来,我们可以将语义分割看作是对每一个图像像素的的分类问题。根据混淆矩阵中的定义,我们亦可以将特定像素所属的集合或区域划分成 TP、TN、FP、FN 四类。

IoU(intersection over union)

IOU指标就是常说的交并比,不仅在语义分割评价中经常被使用,在目标检测中也是常用的评价指标。顾名思义,交并比就是指 target 与 prediction 两者之间交集与并集的比值:
IoU =(T ∩ P)/(T ∪ P)=T P/(F P + T P + F N)

Dice 评价指标

Dice 系数(Dice coefficient)是常见的评价分割效果的方法之一,同样也可以改写成损失函数用来度
量 prediction 和 target 之间的距离。Dice 系数定义如下:
Dice(T, P) = 2|T ∩ P|
|T| ∪ |P|
=
2T P
F P + 2T P + F N
式中:T 表示真实前景(target),P 表示预测前景(prediction)。Dice 系数取值范围为 [0, 1],其中值为1 时代表预测与真实完全一致。仔细观察,Dice 系数与分类评价指标中的 F1 score 很相似:
1/F1=1/Precision+F1/Recall=2TP/(F P + 2T P + F N)
所以,Dice 系数不仅在直观上体现了 target 与 prediction 的相似程度,同时其本质上还隐含了精确
率和召回率两个重要指标。
计算 Dice 时,将 |T ∩ P| 近似为 prediction 与 target 对应元素相乘再相加的结果

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页