1.什么是哈希表
哈希表就是个根据关键码值(key,value)来直接访问数据的数据结构。
定义:哈希表就是通过一个固定的算法函数即所谓的哈希函数将key值转成一个整型,然后对数组的长度进行取模,取模的值就是对应数组的下标值,将value存储在空间里。
2.哈希冲突
就是有可能key通过这个函数转成的整型对数组长度进行取模后的下标冲突。
3.解决哈希冲突的方法
(1)开放寻址法,
比如说,我们的关键字集合为{12,67,56,16,25,37,22,29,15,47,48,34},表长为12。 我们用散列函数f(key) = key mod l2。
当计算前S个数{12,67,56,16,25}时,都是没有冲突的散列地址,直接存入:
计算key = 37时,发现f(37) = 1,此时就与25所在的位置冲突。
于是我们应用上面的公式f(37) = (f(37)+1) mod 12 = 2。于是将37存入下标为2的位置。这其实就是房子被人买了于是买下一间的作法:。
接下来22,29,15,47都没有冲突,正常的存入:
到了 key=48,我们计算得到f(48) = 0,与12所在的0位置冲突了,不要紧,我们f(48) = (f(48)+1) mod 12 = 1,此时又与25所在的位置冲突。于是f(48) = (f(48)+2) mod 12=2,还是冲突……一直到 f(48) = (f(48)+6) mod 12 = 6时,才有空位,机不可失,赶快存入:
我们把这种解决冲突的开放定址法称为线性探测法。
从这个例子我们也看到,我们在解决冲突的时候,还会碰到如48和37这种本来都不是同义词却需要争夺一个地址的情况,我们称这种现象为堆积。很显然,堆积的出现,使得我们需要不断处理冲突,无论是存入还是査找效率都会大大降低。
二次探测法
考虑深一步,如果发生这样的情况,当最后一个key=34,f(key)=10,与22所在的位置冲突,可是22后面没有空位置了,反而它的前面有一个空位置,尽管可以 不断地求余数后得到结果,但效率很差。
因此我们可以改进di = 12, -12, 22, -22,……, q2, -q2 (q <= m/2),这样就等于是可以双向寻找到可能的空位置。
对于34来说,我 们取di即可找到空位置了。另外增加平方运算的目的是为了不让关键字都聚集在 某一块区域。我们称这种方法为二次探测法。
fi(key) = (f(key)+di) MOD m (di = 12, -12, 22, -22,……, q2, -q2, q <= m/2)
随机探测法
还有一种方法是,在冲突时,对于位移量 di 采用随机函数计算得到,我们称之为随机探测法。
此时一定会有人问,既然是随机,那么查找的时候不也随机生成办吗?如何可以获得相同的地址呢?这是个问题。这里的随机其实是伪随机数。
伪随机数是说,如果我们设置随机种子相同,则不断调用随机函数可以生成不会重复的数列,我们在査找时,用同样的随机种子,它每次得到的数列是相同的,相同的 di 当然可以得到相同的散列地址。
fi(key) = (f(key)+di) MOD m (di是一个随机数列)
总之,开放定址法只要在散列表未填满时,总是能找到不发生冲突的地址,是我们常用的解决冲突的办法。
(2)链地址法
上面所说的开发定址法的原理是遇到冲突的时候查找顺着原来哈希地址查找下一个空闲地址然后插入,但是也有一个问题就是如果空间不足,那他无法处理冲突也无法插入数据,因此需要装填因子(空间/插入数据)>=1。
数组特点:寻址容易,插入和删除困难
链表特点:寻址困难,插入删除容易
那有没有一种方法可以解决这种问题呢?链地址法可以,链地址法的原理时如果遇到冲突,他就会在原地址新建一个空间,然后以链表结点的形式插入到该空间。我感觉业界上用的最多的就是链地址法。下面从百度上截取来一张图片,可以很清晰明了反应下面的结构。比如说我有一堆数据{1,12,26,337,353...},而我的哈希算法是H(key)=key mod 16,第一个数据1的哈希值f(1)=1,插入到1结点的后面,第二个数据12的哈希值f(12)=12,插入到12结点,第三个数据26的哈希值f(26)=10,插入到10结点后面,第4个数据337,计算得到哈希值是1,遇到冲突,但是依然只需要找到该1结点的最后链结点插入即可,同理353。
哈希表的拉链法实现
左边很明显是个数组,数组的每个成员包括一个指针,指向一个链表的头,当然这个链表可能为空,也可能元素很多。我们根据元素的一些特征把元素分配到不同的链表中去,也是根据这些特征,找到正确的链表,再从链表中找出这个元素
元素特征转变为数组下标的方法就是散列法。散列法当然不止一种,下面列出三种比较常用的:
1,除法散列法
最直观的一种,上图使用的就是这种散列法,公式:
index = value % 16
学过汇编的都知道,求模数其实是通过一个除法运算得到的,所以叫“除法散列法”。
2,平方散列法
求index是非常频繁的操作,而乘法的运算要比除法来得省时(对现在的CPU来说,估计我们感觉不出来),所以我们考虑把除法换成乘法和一个位移操作。公式:
index = (value * value) >> 28 (右移,除以2^28。记法:左移变大,是乘。右移变小,是除。)
如果数值分配比较均匀的话这种方法能得到不错的结果,但我上面画的那个图的各个元素的值算出来的index都是0——非常失败。也许你还有个问题,value如果很大,value * value不会溢出吗?答案是会的,但我们这个乘法不关心溢出,因为我们根本不是为了获取相乘结果,而是为了获取index。
3,斐波那契(Fibonacci)散列法
平方散列法的缺点是显而易见的,所以我们能不能找出一个理想的乘数,而不是拿value本身当作乘数呢?答案是肯定的。
1,对于16位整数而言,这个乘数是40503
2,对于32位整数而言,这个乘数是2654435769
3,对于64位整数而言,这个乘数是11400714819323198485
这几个“理想乘数”是如何得出来的呢?这跟一个法则有关,叫黄金分割法则,而描述黄金分割法则的最经典表达式无疑就是著名的斐波那契数列,即如此形式的序列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377, 610, 987, 1597, 2584, 4181, 6765, 10946,…。另外,斐波那契数列的值和太阳系八大行星的轨道半径的比例出奇吻合。
对我们常见的32位整数而言,公式:
index = (value * 2654435769) >> 28
如果用这种斐波那契散列法的话,那上面的图就变成这样了:
注:用斐波那契散列法调整之后会比原来的取摸散列法好很多。
转载地址:https://blog.csdn.net/duan19920101/article/details/51579136
https://www.cnblogs.com/s-b-b/p/6208565.html
http://www.nowamagic.net/academy/detail/3008050