from ctypes import * # Import libraries
import math
import random
import os
import cv2
import numpy as np
import time
import darknet
def convertBack(x, y, w, h):
xmin = int(round(x - (w / 2)))
xmax = int(round(x + (w / 2)))
ymin = int(round(y - (h / 2)))
ymax = int(round(y + (h / 2)))
return xmin, ymin, xmax, ymax
def cvDrawBoxes(detections, img):
# Colored labels dictionary
color_dict = {
'person' : [0, 255, 255], 'bicycle': [238, 123, 158], 'car' : [24, 245, 217], 'motorbike' : [224, 119, 227],
'aeroplane' : [154, 52, 104], 'bus' : [179, 50, 247], 'train' : [180, 164, 5], 'truck' : [82, 42, 106
Darknet Python调用yolov4检测视频或rtsp流实时统计检测个数
最新推荐文章于 2024-09-18 15:03:04 发布
本文介绍了如何利用Python结合Darknet框架,调用预训练的Yolov4模型对视频或RTSP流进行实时目标检测,并实现对检测到的对象数量进行统计。通过该方法,可以应用于视频监控场景,实时分析画面中特定对象的出现频率。

订阅专栏 解锁全文
1029

被折叠的 条评论
为什么被折叠?



