1.安装cuda和cudnn。
2.安装paddle gpu版本。
python3 -m pip install paddlepaddle-gpu==1.8.4.post107 -i https://mirror.baidu.com/pypi/simple
3.查看是否安装好。
python
import paddle.fluid
paddle.fluid.install_check.run_check()
安装成功!

4.项目地址:https://github.com/PaddlePaddle/PaddleDetection
5.测试:
python tools/infer.py -c configs/ppyolo/ppyolo.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439.jpg

本文介绍了如何安装PPyolo并进行图片和视频测试,对比了与Yolov4在速度上的差异。通过安装CUDA和CuDNN,然后安装Paddle GPU版本,确认安装成功后,从项目地址获取PPyolo。测试结果显示,PPyolo在视频测试中比Yolov4速度快,平均快4ms。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



