PPyolo的安装,图片及视频测试(对比yolov4)

本文介绍了如何安装PPyolo并进行图片和视频测试,对比了与Yolov4在速度上的差异。通过安装CUDA和CuDNN,然后安装Paddle GPU版本,确认安装成功后,从项目地址获取PPyolo。测试结果显示,PPyolo在视频测试中比Yolov4速度快,平均快4ms。
摘要由CSDN通过智能技术生成

1.安装cuda和cudnn。

2.安装paddle gpu版本。

python3 -m pip install paddlepaddle-gpu==1.8.4.post107 -i https://mirror.baidu.com/pypi/simple

3.查看是否安装好。

python
import paddle.fluid
paddle.fluid.install_check.run_check()

安装成功!

4.项目地址:https://github.com/PaddlePaddle/PaddleDetection

5.测试:

python tools/infer.py -c configs/ppyolo/ppyolo.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439.jpg

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值