支持图片,视频,rtsp视频流检测 。算法部署,检测画面实时web界面显示。yolov4 检测,可替换自己的算法模型,方便在线部署和在线演示。





安装:
1.安装和配置cuda和cudnn。
参考:
Ubuntu16.04深度学习环境的配置和常用软件的安装_学术菜鸟小晨的博客-CSDN博客
2.安装和编译opencv。
参考:Ubuntu下opencv4.4 带CUDA的编译安装_学术菜鸟小晨的博客-CSDN博客
3.安装flask。
pip install flask
Web端算法部署+YOLOV4目标检测+WEB实时检测效果显示代码分享:Web端算法部署+YOLOV4目标检测+WEB实时检测效果显示-深度学习文档类资源-CSDN下载

本文档指导如何在Ubuntu环境下安装CUDA、CUDNN和OpenCV,并通过Flask实现YOLOv4目标检测的Web部署。读者将学会如何实现实时画面检测及自定义模型支持,以及创建一个包含实时检测效果的Web界面。
815

被折叠的 条评论
为什么被折叠?



