
论文作者:Yiping Wei,Kunyu Peng,Alina Roitberg,Jiaming Zhang,Junwei Zheng,Ruiping Liu,Yufan Chen,Kailun Yang,Rainer Stiefelhagen
作者单位:Karlsruhe Institute of Technology; University of Stuttgart; Hunan University
论文链接:http://arxiv.org/abs/2309.12009v1
项目链接:https://github.com/desehuileng0o0/IKEM
内容简介:
1)方向:基于骨架的人体动作识别
2)应用:人体动作识别
3)背景:近年来,自监督表示学习在人体动作识别方面取得了快速发展。现有的大部分工作都是基于骨骼数据,并使用多模态设置。然而,这些工作忽视了不同模态之间性能差异,导致了错误知识在模态之间的传播。此外,现有工作只使用了三种基本模态,即关节、骨骼和动作,没有探索其他额外的模态。
4)方法:本文首先提出 Implicit Knowledge Exchange Module (IKEM),用于减轻低性能模态之间错误知识的传播。然后,进一步提出了三种新的模态,以丰富模态之间的互补信息。最后,为了在引入新模态时保持效率,提出了一种新颖的师生框架,将次要模态中的知识蒸馏到强制模态中,考虑到锚点、正样本和负样本之间的关系约束,命名为关系跨模态知识蒸馏。
5)结果:实验结果证明了所提出方法的有效性,实现了基于骨骼的多模态数据的高效利用。源代码将在https://github.com/desehuileng0o0/IKEM上公开提供。


1255

被折叠的 条评论
为什么被折叠?



