人工智能生成内容AIGC:AIGC for Various Data Modalities: A Survey

本文详细概述了人工智能生成内容(AIGC)在不同数据模态(如图像、视频、3D等)的发展,包括单模态和跨模态方法,探讨了各领域的挑战、代表性工作及技术趋势,并对比展示了基准数据集上的成果,对未来研究方向提出了思考。
摘要由CSDN通过智能技术生成

论文作者:Lin Geng Foo,Hossein Rahmani,Jun Liu

作者单位:Singapore University of Technology and Design (SUTD); Lancaster University

论文链接:http://arxiv.org/abs/2308.14177v1

内容简介:

人工智能生成内容(AI-generated content,AIGC)方法旨在使用人工智能算法生成文本、图像、视频、3D资源和其他媒体。由于其广泛的应用范围和最近作品所展现的潜力,AIGC的发展近期引起了许多关注。AIGC方法已经针对不同的数据模态进行了开发,如图像、视频、文本、3D形状(体素、点云、网格和神经隐式场等)、3D场景、3D人类化身(身体和头部)、3D运动和音频等,每种模态都具有不同的特点和挑战。此外,在跨模态AIGC方法方面也取得了许多重要进展,即生成方法可以接收一种模态的输入条件,并在另一种模态中生成输出。例如,从不同模态到图像、视频、3D形状、3D场景、3D化身(身体和头部)、3D运动(骨架和化身)以及音频模态等。

在本文中,对不同数据模态下的AIGC方法进行了全面的综述,包括单模态和跨模态方法,突出了每种情况下的各种挑战、代表性作品以及近期的技术方向。文章还在多个基准数据集上呈现了各个模态的比较结果。此外,还讨论了挑战和潜在的未来研究方向。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值