深度学习综述:Computation-efficient Deep Learning for Computer Vision: A Survey

论文作者:Yulin Wang,Yizeng Han,Chaofei Wang,Shiji Song,Qi Tian,Gao Huang

作者单位:Tsinghua University; Huawei Inc.

论文链接:http://arxiv.org/abs/2308.13998v1

内容简介:

在过去的十年中,深度学习模型取得了显著进展,在多种视觉感知任务中达到甚至超过了人类水平的表现。这一显著进步引发了将深度网络应用于实际应用领域的兴趣,如自动驾驶汽车、移动设备、机器人和边缘计算。然而,挑战在于现有的先进模型通常需要大量的计算资源,在实际场景中可能导致不切实际的功耗、延迟或碳排放。在效果和效率之间的权衡促使出现了一个新的研究重点:计算效率高的深度学习,旨在在推理过程中实现令人满意的性能同时最小化计算成本。

本综述通过检视四个关键领域,对这个迅速发展的领域进行了广泛的分析:

  1. 开发静态或动态轻量级骨干模型,以有效提取具有区分性的深度表示;
  2. 为特定的计算机视觉任务量身定制的专用网络架构或算法;
  3. 用于压缩深度学习模型的技术;
  4. 在硬件平台上部署高效的深度网络的策略。

此外,本综述还就该领域面临的关键挑战进行了系统讨论,如网络架构设计、训练方案、实际效率和更加现实的模型压缩方法,以及潜在的未来研究方向。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值