
论文作者:Yunhao Li,Zhen Xiao,Lin Yang,Dan Meng,Xin Zhou,Heng Fan,Libo Zhang
作者单位:Chinese Academy of Science;Turing Quantum Company;OPPO Research Institute;University of North Texas
论文链接:http://arxiv.org/abs/2308.07537v1
内容简介:
1)方向:多目标跟踪(MOT)
2)应用:智能监控和自动驾驶等领域
3)背景:MOT是计算机视觉中的一个基本问题,已经取得了显著进展。然而,对于行人属性(如性别、发型、体型和服装特征)这种包含丰富高级信息的特征,研究较少。
4)方法:为了填补这一空白,提出了一种简单、有效、通用的方法来预测行人属性,以支持通用的Re-ID嵌入。首先引入了AttMOT,一个大型、高度丰富的用于行人跟踪的合成数据集,包含超过80k帧和600万个不同时间、天气条件和场景的行人ID。其次,探索了不同的方法来融合Re-ID嵌入和行人属性,包括注意机制,希望能够促进属性辅助MOT的发展。
5)结果:所提出的AAM方法在几个代表性的行人多目标跟踪基准测试中(包括MOT17和MOT20)通过对AttMOT数据集进行实验证明了其有效性和通用性。当应用于最先进的跟踪器时,AAM在MOTA、HOTA、AssA、IDs和IDF1得分上都取得了一致的改进。例如,在MOT17上,当与FairMOT一起使用时,所提出的方法在MOTA上取得了+1.1的改进,在HOTA上取得了+1.7的改进,在IDF1上取得了+1.8的改进。为了鼓励进一步研究属性辅助MOT,将发布AttMOT数据集。















8928

被折叠的 条评论
为什么被折叠?



