论文作者:Darren Tsai,Julie Stephany Berrio,Mao Shan,Eduardo Nebot,Stewart Worrall
作者单位:University of Sydney
论文链接:http://arxiv.org/abs/2308.05988v1
项目链接:https://github.com/darrenjkt/MS3D
内容简介:
1)方向:3D目标检测
2)应用:3D目标检测
3)背景:在不熟悉的领域中部署3D检测器可能导致检测性能急剧下降,因为来自原始训练数据集的变化会引起领域差异。
4)方法:本文介绍了一种名为MS3D++的自我训练框架,用于3D目标检测的多源无监督领域适应。MS3D++通过生成高质量的伪标签,为域适应提供了一种简单的方法,使3D检测器能够适应各种激光雷达类型,无论其密度如何。所提出方法有效地融合了来自不同源领域的多帧预训练检测器的预测,以提高领域泛化性能。随后,在时间上对预测进行了细化,以确保边界框定位和对象分类的时间一致性。此外,对不同3D检测器组件在跨域环境中的性能和特点进行了深入研究,为改进跨域检测器集成提供了有价值的见解。
5)结果:在Waymo、nuScenes和Lyft上的实验结果表明,使用MS3D++伪标签训练的检测器在Bird's Eye View(BEV)评估中取得了与使用人工标注标签相媲美的最先进性能,无论激光雷达的密度是低还是高。