远距离人员识别与重识别:DIOR: Dataset for Indoor-Outdoor Reidentification -- Long Range 3D/2D Skeleton Gait Col

论文作者:Yuyang Chen,Praveen Raj Masilamani,Bhavin Jawade,Srirangaraj Setlur,Karthik Dantu

作者单位:University at Buffalo, SUNY

论文链接:http://arxiv.org/abs/2309.12429v1

内容简介:

1)方向:远距离人员识别与重识别

2)应用:屋顶摄像头、无人机摄像头、街头监控等场景

3)背景:目前对于长距离下的人体识别,需要使用除了面部之外的整体身体特征,如步态。然而,用于训练和测试这种识别算法的数据集并不普遍存在,而且标记的数据集更少。

4)方法:本次工作提出一个名为 DIOR 的框架,用于数据收集、半自动标注,并提供了一个包含 14 名受试者和 1.649 百万帧 RGB 图像的数据集,附带 3D/2D 骨架步态标签,其中包括来自远距离摄像头的 20 万帧图像。该方法利用先进的三维计算机视觉技术,在室内设置中实现了像素级的准确度,通过运动捕捉系统实现。此外,针对室外远距离场景,摆脱了对运动捕捉系统的依赖,采用了一种低成本的混合式三维计算机视觉和学习流程,仅使用 4 台低成本的 RGB 摄像头,在远距离主体上成功实现了准确的骨架标记,即使在 RGB 图像中,它们的高度也受到了限制,只有 20-25 个像素。

5)结果:总而言之,本次工作提供了一个全面的框架和数据集,可以广泛用于远距离人员识别的研究。作者承诺将其研究成果开源,供其他研究者使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值