
论文作者:Yuyang Chen,Praveen Raj Masilamani,Bhavin Jawade,Srirangaraj Setlur,Karthik Dantu
作者单位:University at Buffalo, SUNY
论文链接:http://arxiv.org/abs/2309.12429v1
内容简介:
1)方向:远距离人员识别与重识别
2)应用:屋顶摄像头、无人机摄像头、街头监控等场景
3)背景:目前对于长距离下的人体识别,需要使用除了面部之外的整体身体特征,如步态。然而,用于训练和测试这种识别算法的数据集并不普遍存在,而且标记的数据集更少。
4)方法:本次工作提出一个名为 DIOR 的框架,用于数据收集、半自动标注,并提供了一个包含 14 名受试者和 1.649 百万帧 RGB 图像的数据集,附带 3D/2D 骨架步态标签,其中包括来自远距离摄像头的 20 万帧图像。该方法利用先进的三维计算机视觉技术,在室内设置中实现了像素级的准确度,通过运动捕捉系统实现。此外,针对室外远距离场景,摆脱了对运动捕捉系统的依赖,采用了一种低成本的混合式三维计算机视觉和学习流程,仅使用 4 台低成本的 RGB 摄像头,在远距离主体上成功实现了准确的骨架标记,即使在 RGB 图像中,它们的高度也受到了限制,只有 20-25 个像素。
5)结果:总而言之,本次工作提供了一个全面的框架和数据集,可以广泛用于远距离人员识别的研究。作者承诺将其研究成果开源,供其他研究者使用。















9052

被折叠的 条评论
为什么被折叠?



