开集人员重识别(Re-ID)与跟踪是一种安全和监控技术,用于在没有事先标记的大型人员数据库中识别和跟踪个体。这种技术主要应用于监控系统,特别是在多摄像头设置中,如机场、商场、工业设施等场所。开集人员重识别与封闭集人员重识别的主要区别在于,开集场景中目标个体可能没有事先在数据库中注册,这意味着系统需要能够识别和处理以前未见过的个体。
开集人员重识别通常采用以下技术和方法:
-
深度学习:最近几年,深度神经网络,尤其是卷积神经网络(CNN),在图像识别和特征提取任务中取得了巨大成功。在人员重识别中,深度学习用于提取人物的高维特征向量,这些特征向量随后用于匹配和识别不同摄像头下的同一人物。
-
度量学习:度量学习技术通过学习一个距离函数,使得相同人员的表示在特征空间中更接近,而不同人员的表示则更远。这对于提高重识别的准确性至关重要。
-
模块化系统设计:如MICRO-TRACK系统,这种设计允许系统易于集成并扩展到现有的监控基础设施中,同时保持高效的运行速度和实时性能。
开集人员重识别与跟踪技术的意义和应用广泛,包括:
- 提高安全性:帮助监控系统有效识别和跟踪特定个体,增强公共安全和设施安全。
- 实时监控与响应:在工业环境中,这种技术可以帮助监控员实时跟踪工人的位置,及时响应事故或危险情况。
- 增强的数据分析:通过收集和分析人员移动和活动模式,帮助管理者优化工作流程和环境布局。
开集人员重识别和跟踪系统的开发和部署是一个复杂的任务,涉及多个技术挑战,包括数据集的收集与处理、算法的优化和系统的实际部署。然而,这一技术的成功应用能够显著提升监控系统的效能和智能水平,使之成为安全和监控领域的重要工具。

论文作者:Federico Cunico,Marco Cristani
作者单位:University of Verona
论文链接:http://arxiv.org/abs/2409.03879v1
内容简介:
1)方向:人员重识别(Re-ID)
2)应用:工业监控场景
3)背景:近年来,深度学习方法在人员重新识别任务中取得了显著成果。然而,大多数现有方法在封闭世界场景中表现良好,但在开放集问题中应用有限。开放集场景中,重新识别的人员(探针)与事先未知的画廊进行比较,这对实际应用构成了挑战。此外,多摄像头设置、遮挡问题和实时性要求等进一步限制了现有方法的适用性。
4)方法:本文提出了MICRO-TRACK系统,这是一种模块化的工业多摄像头重新识别和开放集跟踪系统,具备实时性、可扩展性,并且易于集成到现有的工业监控环境中。为了支持这一系统,研究还发布了一个新的Re-ID和跟踪数据集——Facility-ReID,该数据集由8台监控摄像头捕获,包含18分钟的视频数据。
5)结果:MICRO-TRACK系统在实时性、可扩展性和集成性方面表现优异,并且Facility-ReID数据集为工业制造设施中的人员重新识别和跟踪任务提供了重要的测试资源。







6189

被折叠的 条评论
为什么被折叠?



