数据集
文章平均质量分 70
学术菜鸟小晨
5年IT从业经验,人工智能高级算法工程师、人工智能领域新星创作者、博客专家
展开
-
YOLO目标检测数据集大全(持续更新建议收藏)
目标检测是计算机视觉领域的重要任务,其目标是在图像或视频中识别并定位特定物体的位置。为了训练和评估目标检测算法的性能,研究人员和开发者经常会使用一些广泛应用的数据集。以下是一些常用的十类目标检测数据集,这些数据集提供了丰富的图像资源和相关的标注信息,可以帮助研究人员和开发者进行目标检测算法的训练和测试。原创 2023-10-27 09:21:01 · 1630 阅读 · 1 评论 -
道路标志线检测数据集(包括VOC/Yolo格式,包括yolov8训练好的模型)
道路标志线检测是指使用计算机视觉技术来识别和提取道路上的标志线(如车道线、停止线、人行横道线等)的位置和形状。这种检测技术广泛应用于自动驾驶系统、驾驶辅助系统(ADAS)、交通监控系统等领域。本数据集包括:数据集图片和voc/yolo标注 + yolov8m训练的模型 + 说明文档 +测试代码。原创 2024-07-10 15:13:26 · 732 阅读 · 0 评论 -
优质道路病害数据集汇总
标注信息以XML文件格式存储在Annotations文件夹中,每个文件详细记录了图像中各种病害的位置、类型和其他相关属性,这为使用机器学习和深度学习模型进行道路病害识别提供了必要的地面真相数据。道路病害不仅影响道路的平整性和美观,更重要的是会影响车辆行驶的安全性和舒适性,增加行车风险。随着技术的发展,道路病害检测的方法也在不断进步,从人工视觉检查到使用高分辨率图像、无人机、激光扫描技术等现代技术手段,大大提高了检测的效率和准确性。延迟维修可能导致病害恶化,需要更大规模的修复甚至重建,成本显著增加。原创 2024-05-22 16:43:03 · 1267 阅读 · 0 评论 -
道路裂缝坑洼图像开源数据集汇总
数据集包含有裂缝和无裂缝的各种混凝土表面的图像。这个数据集是一个极具挑战性的集合,包含 5,000 多张野外道路上的坑洼图像。这些图像是使用我们的众包平台从 2000 多个不同地点捕获的,其中每张图像都由我们在 Datacluster Labs 的计算机视觉专家手动审查和验证。“Normal”包含从不同角度拍摄的平坦道路图像,“Potholes”包含道路上有坑洼的图像。注意:这些图像是从谷歌网络上抓取的,它可能有一些嘈杂或重复的图像。包含 300 多张包含坑洼的道路图像的标记图像数据集。原创 2023-10-18 09:39:10 · 1084 阅读 · 2 评论 -
老鼠+数据集+夜间老鼠+明厨亮灶
老鼠检测:原创 2022-04-08 10:24:17 · 3095 阅读 · 2 评论
分享