深度学习入门
文章平均质量分 87
学术菜鸟小晨
5年IT从业经验,人工智能高级算法工程师、人工智能领域新星创作者、博客专家
展开
-
深度学习入门(第四天)——递归神经网络与词向量原理解读
常规神经网络并不能考虑时间序列的特征(比如前天+昨天+今天或者带有前后关联的特征),现在每个特征都是独立考虑的,那么如果有这样的特征,网络应该怎么学呢而递归递归网络hidden这里的转回箭头,表示训练完第一个X后,再拿回来去训练第二个X,即前一次训练的结果对后一次的训练结果产生影响。类似现在有X0、X1、X2 ... Xt,假设X0就是本月的1号,X1就是2号以此类推,Xt就是昨天,这样是不是就是一个时间序列。X输入后有了h,h是中间的结果,每个h保证能联合前一个的h。原创 2023-11-17 09:09:48 · 228 阅读 · 0 评论 -
深度学习入门(第三天)——卷积神经网络
pad表示+1边缘,原本数据只有蓝色背景的部分(中间部分),而周围都是边缘增加的0,为什么这么做,滑动窗口时,边缘数据点明显滑动少,中间多,那能说明中间的就重要吗,为了使边缘的数据点也滑动多几次,就增加了这个边缘填充。先把图像进行分割(最左边),分割成多个小区域,提取其中一个小区域(第二个5×5×3),蓝色图的右下角3×3矩阵,大字体的值是X的值,而小字体的值是w权重,会不断循环获取最优的w权重和对应的值,并输出右边绿色的14(特征值)。移动一个步长,得到红色绿色特征值,移动的步长越小,特征值越多。原创 2023-11-16 11:25:54 · 253 阅读 · 0 评论 -
深度学习入门(第二天)——走进深度学习的世界 神经网络模型
简单的例子:如何让 f 值更小,就是改变x、y、z,而损失函数也是这样,那么我们分别求偏导,则能得出每个值对结果的影响梯度是一步一步传的。input layer输入层:比如输入X,有多少个x即有多少个input,比如前面的猫有3千多像素点,那么就有3千多个“圈”进行input。hidden layer 1:指将X做了某些变换,且每个圈与前者的全部圈都连接,即是全连接,为什么多了1个圈,是表示可能会在原始特征的基础上做变换,变成4个特征。具体如:假设X输入的是年龄,第一圈表示对年龄做平方,第二个圈表示将年原创 2023-11-16 11:05:28 · 298 阅读 · 0 评论 -
深度学习入门(第一天)——深度学习必备知识点
人工智能、机器学习、深度学习的区别于联系机器学习的流程:数据提取特征工程建立模型评估与应用特征工程可以说是建模过程中,最重要的部分。既然特征工程是最重要的,常规我们会做各种各样的特征,如聚合统计、交叉等,那有没有一种方法,它可以去选择重要的特征。而深度学习可以说是最接近人工智能这一概念的,因为它解决了机器学习中“人工的”问题,如人工的选择特征、选择算法等。深度学习最大的亮点,就是解决特征工程的人工问题。特征工程的作用:数据特征决定了模型的上限预处理和特征提取是最核心的。原创 2023-11-16 10:52:44 · 339 阅读 · 1 评论
分享