论文
文章平均质量分 82
学术菜鸟小晨
5年IT从业经验,人工智能高级算法工程师、人工智能领域新星创作者、博客专家
展开
-
跨颜色人员重识别
跨颜色人员重识别是一种特定的人员重识别技术,旨在解决由于颜色配置不一致导致的识别问题。3)背景:在典型的人员重识别(Person ReID)任务中,同一身份的主要颜色配置被认为保持一致。跨颜色人员重识别通过引入先进的颜色空间学习技术,不仅解决了传统人员识别技术在实际应用中的局限性,还推动了人员识别技术在更广泛条件下的应用,为相关技术的发展和完善提供了新的方向和思路。5)结果:为了评估CSL方法的有效性和稳健性,在几个跨颜色人员再识别基准上进行了评估,实验表明所提出方法始终超过了最先进的方法。原创 2024-09-30 11:30:39 · 1049 阅读 · 0 评论 -
遥感图像文本检索
基于PIR,设计了一个领域自适应的远程感知图像-文本检索框架PIR-ITR,以解决视觉-语言理解任务中的语义噪音问题。此外,提出了PIR-CLIP,一种基于CLIP的领域特定框架,用于解决远程感知图像-文本检索中的语义噪音,并进一步提高开放领域检索性能。此外,基于CLIP的PIR-CLIP框架专门处理远程感知图像文本检索中的开放领域问题,进一步提高了检索的准确性。5)结果:实验结果表明,PIR能够增强视觉和文本表示,在两个基准数据集RSICD和RSITMD上优于封闭领域和开放领域检索的最先进方法。原创 2024-09-30 11:27:07 · 534 阅读 · 0 评论 -
遥感图像分割
4)方法:为了解决这一问题,提出了一种新型的Agent Mining Transformer(AgMTR),该方法自适应地挖掘一组局部感知代理,以构建代理级语义相关性。遥感图像分割是一种应用于遥感图像的计算机视觉技术,用于将图像划分为不同的区域,每个区域代表地表的不同特征,如水体、森林、城市区域等。然而,在遥感场景中,这种像素级相关性可能会导致大量不匹配,从而引发查询前景(FG)与背景(BG)像素之间的语义模糊。5)结果:在遥感基准iSAID上的广泛实验表明,所提方法达到了最先进的性能。原创 2024-09-29 09:17:39 · 1069 阅读 · 0 评论 -
视频异常检测(VAD)
最后,该方法可以通过注意力忽略模糊的真实异常,并依赖于运动记忆项增加正常和异常运动之间的正常性差距。3)背景:现有的VAD方法通常学习正常样本的分布,并通过测量显著偏差来检测异常,但不良的泛化可能会重构一些异常,从而抑制偏差。同时,大多数VAD无法处理新目标领域的跨数据集验证,少样本方法必须依赖目标领域的模型调整来完成领域适应。是一种通过分析视频流中的行为或场景,检测视频中的异常事件的技术。4)方法:本文提出一种新的VAD方法,其中包含一个运动引导的记忆模块,以实现零样本的跨数据集验证。原创 2024-09-29 09:14:29 · 1028 阅读 · 0 评论 -
无人机跟踪
4)方法:本文提出了一种新颖的渐进式表示学习框架PRL-Track,包括粗糙表示学习和精细表示学习两个阶段。在文中提到的背景下,主要涉及的是视觉目标跟踪,即通过摄像头捕捉的图像来实时监控和跟踪移动对象。:为了在实际应用中达到高效的跟踪性能,如每秒42.6帧,通常需要对跟踪算法进行特别优化,使其能够快速处理图像数据并做出准确的跟踪判断。3)背景:在复杂动态环境中,学习稳健的目标表示对于UAV跟踪尤为具有挑战性,尤其是在面临长宽比变化和遮挡时。:无人机上的摄像头捕捉实时图像,这是最基本的硬件需求。原创 2024-09-28 09:30:00 · 1001 阅读 · 0 评论 -
图像超分辨率(SR)
4)方法:本文引入一种新的一步SR模型,显著解决了基于扩散的SR方法的效率问题。3)背景:尽管基于扩散的超分辨率方法依赖大型预训练的文本到图像扩散模型取得了显著成功,但仍面临两个挑战:需要大量采样步骤以获得满意结果,从而限制了在实际场景中的效率;:如双线性、双三次和Lanczos插值,这些方法通过数学公式计算低分辨率图像中的像素点周围的新像素值,是最简单也是最初级的SR技术。图像超分辨率技术通过提高图像分辨率,为多种应用领域提供了重要的技术支持,极大地扩展了图像的使用场景和价值。2)应用:图像超分辨率。原创 2024-09-28 10:00:00 · 963 阅读 · 0 评论 -
人脸超分辨率(FSR)
如上文所述,这种方法首先估计面部的先验信息(如面部关键点、边缘等),然后利用这些信息来指导超分辨率重建的过程。:这种方法包括一个生成网络和一个判别网络,生成网络负责产生高分辨率图像,判别网络则尝试区分生成的图像和真实的高分辨率图像。3)背景:随着深度学习技术的不断发展,当代的先验引导的FSR方法首先估计面部先验,然后利用这些信息来辅助超分辨率重建过程。FSR的实现通常依赖于深度学习技术,特别是卷积神经网络(CNN)。:通过集中网络的注意力在关键特征上,可以更有效地恢复重要的细节信息,提高FSR的性能。原创 2024-09-27 09:00:00 · 775 阅读 · 0 评论 -
开放词汇目标检测
开放词汇目标检测(Open Vocabulary Object Detection, OVOD)是一种计算机视觉技术,它扩展了传统目标检测的概念,能够识别和定位图像中的对象,即使这些对象的类别没有在训练数据集中明确列出。利用LLM突出显示输入文本中的属性词汇,通过调整令牌掩码,提取OVD模型的文本编码器中的全局文本和属性特定特征,将它们显式组合为新的属性突出显示特征,其中相应的标量被手工设计或学习以重新调整这两个向量。然而,这些OVD模型是在大规模图像-文本对上进行预训练的,具有丰富的属性词汇,其潜在。原创 2024-09-26 16:49:39 · 1104 阅读 · 0 评论 -
物体实例分割,机器人拾取
5)结果:在OCID、OSD以及包括PhoCAL和HouseCat6D在内的额外光度挑战数据集上进行了大量实验,结果表明,即使与以往方法相比仅使用10%的训练样本,UOIS-SAM在看不见物体分割方面实现了最先进的性能,在各种桌面场景中展现出其有效性和稳健性。在提供的内容中,使用的技术是UOIS-SAM(无监督物体实例分割-SAM),这是一种针对自主机器人在桌面场景中的应用而设计的数据高效的方法。这一任务不仅识别出图像中的物体,还能区分出多个同类物体的不同实例,例如在一张桌子上摆放的多个相同的杯子。原创 2024-09-26 09:46:20 · 905 阅读 · 0 评论 -
开放词汇全景分割
这与传统的图像分割不同,后者通常仅限于识别有限的、预先定义的对象类别。开放词汇全景分割的目标是识别和处理图像中的任何可能的对象,无论这些对象是否包含在训练数据的标签集中。这种调整使模型能够适应新的分布,同时保持预训练的知识,这对于处理不在训练集中的新对象类别尤为重要。此外,开放词汇全景分割技术的进步还有助于减少对大量标注数据的依赖,降低训练成本,这对于推动技术的可持续发展和更广泛的应用具有重要意义。这种调整使模型能够在保留VLM预训练知识的同时,将面具标记的图像焦点适应到新的分布,同时减少训练资源的使用。原创 2024-09-26 09:40:52 · 1058 阅读 · 0 评论 -
视频生成技术分享
4)方法:为了解决这一挑战,提出了S2AG-Vid,这是一种无需训练的推理阶段优化方法,可改善T2V模型中多个对象与其对应动作之间的对齐。为了应对这些挑战,S2AG-Vid提出了一种无需训练的推理阶段优化方法,通过引入空间位置的交叉注意力(CA)约束和语法引导的对比约束,来改善多个对象与其对应动作的对齐。其意义在于,这项技术不仅提升了视频生成的质量和一致性,还拓宽了T2V应用的可能性,使得生成更复杂、动态的场景成为可能,为创意、教育和娱乐等领域提供了新的工具和机会。Baidu Inc.原创 2024-09-24 17:58:25 · 373 阅读 · 0 评论 -
图像修复技术分享
在图像生成模块中,采用了一个基于前景图像的边缘图和语言提示的文本引导的Canny-to-image生成模型来创建模板图像,并使用图像优化器通过混合输入的前景和模板图像来生成结果。从这个内容简介中提到的“Anywhere”框架,则是一个结合了多种先进技术的系统,专门针对图像修复中的一些挑战,如前景和背景的一致性问题和过度想象问题,通过结合视觉语言模型、语言模型和图像生成模型来提高修复质量和多样性。:扩散模型和GAN用于生成缺失的图像内容,这些模型可以生成高度逼真的图像区域,以无缝衔接地填补图像中的缺失部分。原创 2024-09-23 09:33:23 · 1515 阅读 · 0 评论 -
钢表面缺陷识别
然而,由于缺陷图像的样本数量依然不足,生成的图像质量常常受到限制,这影响了模型的实际应用效果。4)方法:本文提出稳定表面缺陷生成(StableSDG)方法,利用稳定扩散模型中嵌入的广泛生成分布进行钢表面缺陷图像生成。5)结果:在钢表面缺陷数据集上进行了大量实验,展示了在生成高质量样本和训练识别模型方面的最新性能,并且所设计的两个过程对性能至关重要。生成图像之间的分布差异,提出了两个过程:通过调整扩散模型的参数来对齐分布,同时在生成过程中采用面向图像的生成而非纯。2)应用:工业价值巨大的钢表面缺陷识别。原创 2024-09-23 09:30:20 · 555 阅读 · 0 评论 -
制造业缺陷检测
制造业缺陷检测的意义重大,它不仅可以防止次品流入市场,影响品牌信誉,还可以通过提前识别生产问题,减少材料和时间的浪费,从而降低成本和提高生产效率。此外,对于某些关键行业如汽车或航空制造业,高质量的缺陷检测系统尤为重要,因为它们涉及到人员安全和高风险的操作环境。5)结果:在实验中,MemoryMamba在四个工业数据集上进行了评估,这些数据集涵盖了各种类型和复杂程度的缺陷。4)方法:本文介绍了一种新型的记忆增强状态空间模型(MemoryMamba),旨在克服现有缺陷识别模型的局限性。原创 2024-09-22 10:30:00 · 318 阅读 · 0 评论 -
文档图像恢复
在内的五个文档图像恢复任务。通过这些技术实现,DocRes 等先进的模型不仅能够独立处理各种图像恢复任务,还能通过多任务学习进一步优化处理效果,展示了在广泛的文档图像恢复任务中的潜力和应用广度。5)结果:实验结果表明,DocRes相比现有最先进的任务特定模型表现出竞争力或更优的性能,展示了DocRes在更广泛的文档图像恢复任务领域的潜力。3)背景:文档图像的质量显著影响整体性能,现有方法独立处理不同的恢复任务,导致系统复杂且无法利用多任务学习的潜力。2)应用:文档人工智能系统。1)方向:文档图像恢复。原创 2024-09-22 10:00:00 · 865 阅读 · 0 评论 -
视频动作编辑
视频动作编辑是指在视频中修改或操纵人物或物体的动作和行为的技术。这种编辑可以用于创造新的视频内容,改善或修改现有的视频片段,或者用于特殊效果和动画制作。视频动作编辑的应用范围非常广泛,包括电影制作、动画、广告、体育赛事分析和视频游戏开发等。原创 2024-09-21 10:15:00 · 1448 阅读 · 0 评论 -
变化检测(Change Detection)
4)方法:为了解决这一问题,作者提出了一种基于VLM引导的半监督CD方法,即DiffMatch。为了解决当前大部分VLMs仅适用于单时相图像的问题,首先提出了基于VLM的混合变化事件生成策略(CEG),为未标记的CD数据生成伪标签。此外,通过自动生成的伪标签和改进的模型结构,这些技术可以在较低的标注开销下实现更高的精度和更好的性能,对于实时或大范围的监测应用尤为关键。3)背景:现有的变化检测方法需要大量的像素级标注数据,而标注这些数据是一项费时费力且昂贵的工作,尤其是对于多时相图像而言。原创 2024-09-21 10:00:00 · 1411 阅读 · 0 评论 -
视频去噪技术分享
4)方法:本文提出了一种新颖的无监督视频去噪框架TAP,该框架将可调节的时间模块集成到预训练的图像去噪器中。:最近,利用深度神经网络,特别是卷积神经网络(CNNs)和生成对抗网络(GANs),进行视频去噪取得了显著的进展。3)背景:最近深度学习在图像和视频去噪方面取得了显著进展,但获取动态场景的配对视频数据的挑战阻碍了深度视频去噪技术的实际部署。:利用连续帧之间的时间相关性来减少噪声。5)结果:与其他无监督视频去噪方法相比,该框架在sRGB和原始视频去噪数据集上表现出优越的性能。中,配对数据更容易获得。原创 2024-09-20 09:35:58 · 764 阅读 · 0 评论 -
图像超分辨率(ISR)
除了传统的CNN,还有使用生成对抗网络(GAN)的方法,其中一个网络生成高分辨率图像,另一个网络评估生成的图像质量,通过这种方式推动高分辨率图像的质量向真实图像靠拢。4)方法:本文提出一种新颖且计算效率高的ISR算法,不依赖于图像数据集学习ISR任务,通过重新定义ISR任务为计算跨越退化空间的核的逆来实现。在提出的NSSR-DIL模型中,特别强调了计算效率和模型的通用性,这种模型不依赖于特定的数据集学习,而是通过深度身份学习和核的逆计算来实现超分辨率,降低了计算成本,使得技术更加适用于实际应用场景。原创 2024-09-20 09:25:31 · 854 阅读 · 0 评论 -
化妆风格迁移技术代码分享
在你提到的内容中,使用的技术是内容-风格解耦化妆迁移方法(Content-Style Decoupling Makeup Transfer, 简称 CSD-MT),这是一种全新的方法,其核心在于通过频率分解将面部图像的内容和化妆风格信息分离处理。这里的关键假设是面部图像的低频(LF)部分包含了化妆风格信息,而高频(HF)部分则包含了更多的内容细节。化妆风格迁移技术的研究和应用,可以使用户在虚拟环境中预览不同的化妆效果,提供更个性化的美容服务,同时也为人工智能在艺术和娱乐领域的应用开辟了新的可能性。原创 2024-09-20 09:17:08 · 317 阅读 · 0 评论 -
跨模态检索
此外,引入了一种新的量化方法,带有Gumbel的乘积量化(Product Quantization with Gumbel,PQG),促进平衡的码书学习,从而提高检索性能。这种技术的意义在于,它能够实现高效的跨模态信息检索,使得用户可以用一种模态(如文本)来搜索另一种模态(如图像),从而提高了信息检索的灵活性和准确性。:在本文中,跨模态量化蒸馏(DCMQ)方法通过知识蒸馏的方式,将更丰富的语义信息从一个强大的模型(如VLP)转移到一个更紧凑的哈希模型中,从而改进哈希表示的学习效果。1)方向:跨模态检索。原创 2024-09-19 09:12:11 · 646 阅读 · 0 评论 -
图像编辑技术代码分享
图像编辑是一种技术和艺术,涉及修改或增强照片或图像,以达到预期的视觉效果、修正错误或进行创意表达。这项技术在许多领域中都有应用,如广告、社交媒体、新闻报道和个人娱乐等。原创 2024-09-19 09:11:43 · 695 阅读 · 0 评论 -
图像编辑技术
4)方法:本文引入一种新的一步式拖拽式图像编辑方法,即FastDrag,通过潜在变形函数(LWF)模拟拉伸材料的行为来调整潜在空间内各像素的位置,实现一步潜在语义优化,从而显著提升编辑速度。此外,引入一致性保持策略,通过在扩散反演过程中将原始图像的语义信息保存为键值对,并在扩散采样中引导,以保持编辑后图像与原始图像的一致性。基于生成模型的拖拽式图像编辑方法,通常需要通过多次迭代优化潜在语义,这种方法的优点是能够生成高质量的编辑结果,但缺点是处理速度较慢,限制了实际应用的效率。2)应用:图像内容编辑。原创 2024-09-18 10:04:03 · 595 阅读 · 0 评论 -
文本驱动的3D人体动作生成
4)方法:本文提出了KeyMotion方法,通过首先生成关键帧,然后进行填充,生成与输入文本相对应的合理人体动作序列。为了完成动作序列,提出了一个文本引导的Transformer,设计用于执行动作填充,确保保持忠实度并遵守人体动作的物理约束。作者单位:University of Western Australia;文本驱动的3D人体动作生成技术,旨在根据给定的文本描述自动生成3D人体的动作序列。文本驱动的3D人体动作生成技术不仅提高了动作制作的精确性和效率,也为相关行业带来了创新的工作流程和产品。原创 2024-09-18 09:56:23 · 916 阅读 · 0 评论 -
图像超分辨率技术代码分享
基于此观察,开发了补丁自适应分组采样(PGS)方法,将特征补丁按重建难度分组,并为每组动态分配适当的采样配置,从而加速推理。此外,为了在每一步采样中提高去噪能力,开发了纹理提示,通过从独立参考纹理存储中检索高质量的纹理先验来指导扩散模型的估计。:这是一种新的方法,它根据图像各部分的重建难度将图像分成多个补丁,对这些补丁进行分类,并为每一类配置不同的采样步骤,以优化计算资源并加速图像处理过程。这些技术不仅提升了图像的视觉效果,还扩展了图像处理技术的应用范围,对科研和工业具有重要的实用价值。原创 2024-09-18 09:36:48 · 1116 阅读 · 0 评论 -
图像去雨技术代码分享
4)方法:本文专注于UHD图像去雨任务,并提出了首个大规模UHD图像去雨数据集4K-Rain13k,包含13,000对4K分辨率的图像。随着成像技术的进步,传统的图像去雨方法在处理4K或更高分辨率图像时可能不再有效。因此,本文提出了一个名为4K-Rain13k的大规模UHD图像去雨数据集,并开发了一种新的基于视觉MLP(多层感知器)的架构,称为UDR-Mixer。3)背景:现有的图像去雨方法主要针对低分辨率图像,对于超高清(UHD)图像的效果尚不明确,尤其是随着成像设备的不断进步。原创 2024-09-18 09:31:34 · 457 阅读 · 0 评论 -
图像增强技术分析
图像增强的目标通常是提高图像的某些视觉特征,如对比度、亮度、清晰度、纹理细节等,以便更清楚地显示图像内容或提高图像分析的准确性。通过改善图像的视觉质量,图像增强技术可以帮助提高决策的准确性和效率。4)方法:本文提出一种名为FreeEnhance的新框架,用于使用现成的图像扩散模型进行内容一致的图像增强。3)背景:随着文本到图像生成模型的出现,人们意识到作为后处理的图像增强可以显著提高生成图像的视觉质量。然而,探索扩散模型以增强生成的图像并不容易,需要精心丰富丰富细节,同时保留原始图像中关键内容的视觉外观。原创 2024-09-16 12:00:07 · 1043 阅读 · 0 评论 -
文本到3D生成
这种技术的意义在于提供了一种更加精确和细致的方式来从文本生成三维内容,使得三维模型不仅在视觉上更加丰富和真实,还能更好地符合文本描述的细节和语义,从而在数字媒体、电影、视频游戏设计和其他需要精确三维建模的领域中有极大的应用潜力。4)方法:为了缓解这些问题,提出一种新的文本到三维架构——DreamMesh,该架构基于明确定义的表面(三角网格)生成高保真的显式三维模型。然而,NeRF的隐式三维表示缺乏对网格和表面纹理的显式建模,这种表面未定义的方式可能会导致模糊的纹理细节、不一致的视图和噪声表面问题。原创 2024-09-15 21:10:31 · 349 阅读 · 0 评论 -
复杂情感识别系统
此外,由于捕捉细微情感的复杂性,获取用于CERS的大规模数据集也十分困难,需要采用专门的方法进行数据收集和处理。所选的研究论文提供了关于CERS潜在应用、临床意义和结果的视角,旨在促进其在临床决策过程中的接受和整合。复杂情感识别系统(CERS)是一种先进的技术平台,旨在通过分析情感的组合、相互关系及其动态变化来解读和识别复杂的情感状态。复杂情感识别系统通过使用先进的计算方法和多源数据,提供了一个强大的工具来分析和理解人类的复杂情感,具有重要的理论价值和广泛的应用前景。原创 2024-09-15 21:10:01 · 610 阅读 · 0 评论 -
行人意图估计
CAPFI通过利用细分的情境上下文,在有针对性的随机打乱中减轻特征值的随机性,提供了更高的可解释性和可靠的特征重要性评估。研究将行人意图估计(PIE)数据集划分为16个可比的情境集,测量了五种不同神经网络架构在每个情境中的意图预测基线性能,并使用CAPFI评估输入特征的重要性。研究发现,不同模型在各种情境特征下表现出细微差异,揭示了行人边界框和自车速度在预测行人意图中的关键作用,同时通过跨情境置换评估发现了速度特征带来的潜在预测偏差。作者单位:University of Leeds;原创 2024-09-14 10:56:29 · 600 阅读 · 0 评论 -
深度估计智能化的应用
4)方法:本文提出的Depth on Demand (DoD) 方法利用高帧率的RGB传感器和低帧率且稀疏的主动深度传感器,通过三大核心阶段实现精确的时空深度密集化:i)多模态编码,ii)迭代多模态融合,iii)深度解码。3)背景:目前,ToF(飞行时间)和LiDAR设备分别用于室内和室外的深度估计,但这些设备的低帧率、高能耗和空间稀疏性限制了它们的应用范围。5)结果:在室内和室外视频数据集上的广泛实验表明,DoD方法在环境扫描和汽车感知等应用场景中有效,能够提供更精确和密集的深度估计,同时降低能耗。原创 2024-09-14 10:53:35 · 368 阅读 · 0 评论 -
开集人员重识别(Re-ID) 与跟踪
开集人员重识别(Re-ID)与跟踪是一种安全和监控技术,用于在没有事先标记的大型人员数据库中识别和跟踪个体。开集人员重识别与封闭集人员重识别的主要区别在于,开集场景中目标个体可能没有事先在数据库中注册,这意味着系统需要能够识别和处理以前未见过的个体。开集人员重识别和跟踪系统的开发和部署是一个复杂的任务,涉及多个技术挑战,包括数据集的收集与处理、算法的优化和系统的实际部署。系统,这是一种模块化的工业多摄像头重新识别和开放集跟踪系统,具备实时性、可扩展性,并且易于集成到现有的工业监控环境中。原创 2024-09-12 11:34:44 · 677 阅读 · 0 评论 -
图像和文本统一识别
图像和文本统一识别(UNIT)是一种尝试将图像识别和文本识别任务统一到单一模型中的技术。这种方法的目标是提高模型在处理包含文本信息的图像时的效率和准确性,从而使模型能够更好地理解和处理视觉内容中的文本信息。原创 2024-09-11 16:39:13 · 673 阅读 · 0 评论 -
动作计数技术
这些技术的实现意义重大,不仅提高了处理未剪辑视频数据的能力,还能在复杂环境中准确计数,支持实时操作。此外,这种方法对动作的数量和类型具有较强的泛化能力,可以广泛适用于不同的实际应用场景中,如体育赛事自动统计、监控系统中异常行为的自动检测等。例如,计算视频中人们拍手的次数或跳跃的次数。3)背景:当前的MRAC任务面临挑战,因为它需要处理未剪辑的视频数据,并准确计数多个实例的重复动作。:通过计算机视觉算法首先检测视频中的动作实例(如人类行为),然后跟踪这些实例在视频序列中的连续帧里的运动。原创 2024-09-11 16:27:36 · 733 阅读 · 0 评论 -
图像质量评估
4)方法:本文引入Compare2Score,一个基于全方位LMM的无参考图像质量评估(NR-IQA)模型,能够产生定性的比较响应,并有效地将这些离散的比较级别转化为连续的质量分数。5)结果:在九个IQA数据集上进行的大量实验验证了Compare2Score在训练过程中有效地连接了文本定义的比较级别,并将其转化为推断中的单个图像质量分数,超越了各种场景下的最先进IQA模型。在绝对质量评分的图像质量评估(IQA)方面取得了显著进展,但如何将可靠的相对质量比较输出转化为连续的感知质量分数仍然未被充分探索。原创 2024-09-06 14:44:37 · 904 阅读 · 0 评论 -
3D目标检测
值得注意的是,PillarHist仅在PFE阶段操作以增强性能,可以无缝集成到现有的基于柱状结构的方法中,而不引入复杂的操作。3)背景:最近,基于柱状结构的3D目标检测器因其紧凑的表示和低计算开销而备受关注,适合在车载部署和量化方面使用。然而,现有的基于柱状结构的检测器在柱状特征编码(PFE)过程中仍然存在高度维度信息丢失和数值分布差异大的问题,严重限制了它们的性能和量化潜力。它通过统计柱状内不同高度处点的离散分布,保留了更多的高度信息,减少了计算开销,同时优化了数据的量化表现。1)方向:3D目标检测。原创 2024-09-06 14:42:00 · 557 阅读 · 0 评论 -
动作识别+OOD
4)方法:本文提出一种新的端到端的基于骨架的模型,称为Action-OOD,专门用于超出分布的人类动作检测。本文提出的方法有效解决了训练数据无法涵盖所有动作的挑战,并在多种数据集上展示了优越性能,推动了动作识别技术的发展。5)结果:通过在NTU-RGB+D 60、NTU-RGB+D 120和Kinetics-400数据集上进行的大量实验,展示了所提出的方法相对于最先进方法的优越性能。此次发现强调了经典超出分布检测技术在基于骨架的动作识别任务中的有效性,为该领域的未来研究提供了有前途的途径。原创 2024-09-05 09:32:04 · 638 阅读 · 0 评论 -
视频异常检测
DAM采用帧注意机制识别最重要的帧,并使用骨架注意机制在固定分区内捕捉更广泛的关系,同时保持最小的参数和计算量。为了解决这些问题,研究提出了一种双重注意模块 (DAM),它通过帧注意机制和骨架注意机制来捕捉时空数据中的重要帧和广泛的骨架关系。在模型的后处理阶段,提出了双重注意归一化流 (DA-Flow),它在保留模型轻量化的同时,增强了对异常情况的检测能力。这项研究的意义在于,它提出了一个具有高效计算性能的轻量级模型,能够在噪声环境下进行异常检测,并在多项实验中取得了与现有技术相当甚至更好的性能表现。原创 2024-09-05 09:23:48 · 588 阅读 · 0 评论 -
文本属性人员搜索
4)方法:本文提出一个属性感知的隐式模态对齐(AIMA)框架,学习文本属性和图像之间的局部表示对应关系,并结合全局表示匹配来缩小模态差距。最后,提出了一个属性-IoU引导的内模态对比(A-IoU IMC)损失,将嵌入空间中不同文本属性的分布与它们的IoU分布对齐,实现更好的语义排列。为了有效地匹配文本描述和图像中的人物,本文提出了一个属性感知的隐式模态对齐(AIMA)框架,通过学习文本属性和图像之间的局部表示对应关系,并结合全局表示来缩小模态差距。,旨在通过分析文本描述中的属性信息来搜索或识别特定人员。原创 2024-09-04 10:05:50 · 739 阅读 · 0 评论 -
微小目标检测
其次,基于两阶段框架,用一种新颖的Trans R-CNN检测器取代了过时的R-CNN检测器,专注于利用自注意力来表示微小目标。3)背景:尽管计算机视觉领域取得了显著进展,但对微小目标的精确检测仍然是一个重大挑战,主要是因为这些对象在图像数据中被分配的像素表示非常微小。:这是一个易于插入的设计模块,利用对比学习来减少特征金字塔网络(FPN)中融合过程中的噪声,从而更好地处理多尺度目标的检测。:替代了传统的R-CNN检测器,利用自注意力机制来增强微小目标的表示能力,尤其在两阶段检测框架中发挥重要作用。原创 2024-09-04 10:01:51 · 837 阅读 · 0 评论
分享